
DOCUMENTATION FOR EXTENDED BASIC COMPILER 2.56D
(06/12/2015)

By Harry Wilhelm – 2012-2015

The Extended BASIC language is arguably the most versatile of the languages available for the
TI99/4A. Programs are easy to write, relatively understandable, and simple to modify and edit, with lots
of error checking to facilitate program development. The main drawback is that the double interpreted
nature of Extended BASIC makes it extremely slow.

The intent in writing my Extended BASIC compiler was to make it possible to take full advantage of
the simple program development offered by XB, then make an end run around the speed limitations.
The goal was to implement Extended BASIC as fully as possible within the time limits of the
programmer and the memory limits of the machine. There are limitations and you will probably need
to adjust your programming style a bit, but in general, all the major features of XB run the same when
compiled. This means that you can concentrate on writing the XB code and testing it in the XB
environment. After the program has been perfected in Extended BASIC it can then be compiled into an
equivalent code that functions at a speed approaching that of assembly language. The average
Extended BASIC program will run about 20 times faster after being compiled, and certain operations
will run up to 70 times faster.

There are several methods by which the compiler achieves this speed increase. First, Extended BASIC
must perform a lengthy prescan operation before a program can even start. This is done in advance by
the compiler and becomes part of the compiled code. Second, an XB program is interpreted twice by
the computer; once by the Extended BASIC interpreter, and a second time by the GPL interpreter. The
compiler generates "threaded code" which needs its own interpreter (called the runtime routines), but at
least only one interpreter is involved, and it's a fast one! Third, integer arithmetic is used throughout
instead of floating point arithmetic. This alone makes the code run at least 5 times faster, albeit without
the versatility of 13 digit floating point accuracy. Fourth, to increase the speed even more, virtually no
error trapping is done. Any error reports that are given are not very helpful anyway because you won't
know the line number where the error happened. Therefore it is imperative that the Extended BASIC
program be thoroughly debugged before you attempt to compile it!

The compiler has been expanded to include all the XB256 assembly language extensions except for
CAT and SL2VDP. XB256 removes most of the graphics restrictions imposed by Extended BASIC. It
lets you toggle between two independent screens. Screen1 is the graphics mode normally used
by Extended BASIC; Screen2 lets you define 256 characters, more than double the number
normally usable in XB. When in screen2, you can use up to 28 double sized sprites using the
patterns available to Screen1. You can scroll screen characters left, right, up, or down and
specify a window area for scrolling, leaving the rest of the screen unchanged. Other routines
let you scroll smoothly one pixel at a time to the left, right, up or down. There are
miscellaneous subroutines that let you hilight text, set the sprite early clock, print in any
direction on the screen using all 32 columns, read from or write to the VDP RAM, write
compressed strings to VDP, move sound tables into VDP, and more. With XB256 you can test
your program in the XB environment, then use the compiler to get a huge performance
increase.

The Extended BASIC compiler has been tested with a genuine TI-99/4a, with Classic 99, and with
Win994a. It is compatible with all of them except that the early clock is not usable in Win994a.

The compiler is designed to be on a disk placed in drive #1.

Page 1

Compiling an Extended BASIC program

Following is an overview of the steps used to compile a program.

1 – Save an Extended BASIC program to disk in merge format.
2 – Run the compiler. This reads the merge format BASIC program and creates an assembly language
source code file.
3 – Run the assembler. This reads the assembly language source code file created by the compiler and
creates an assembly language object code file.
4 – Run the compiler loader. This loads the assembly language object code file into memory in a form
that can be saved and run via Extended BASIC or in EA5 format.

You can see that five files are used in the process of compiling a program. To help keep track of them,
I recommend using the following conventions. If the original XB program is called TEST then:
TEST = original XB program
TEST-M = merge format file
TEST-S = assembly source code file
TEST-O = assembly object code file
TEST-C = compiled code ready to run from Extended BASIC
TEST-A – compiled code ready to run from EA5
(The above are just suggestions. Feel free to use whatever file names you wish.)

Following is a detailed description explaining how to compile a program.

Write or load the BASIC or Extended BASIC program. This can be done in either BASIC or XB.
Remember that all variables must be integers. Using TI BASIC allows you to use character sets 15 and
16, which is about the only reason for using it. (RXB allows the use of character sets 15 and 16 within
the XB environment) Extended BASIC offers sprites, DISPLAY AT and ACCEPT AT and all the
advanced features offered by XB256. Thoroughly debug the program.

Save a BASIC or Extended BASIC copy for future development.
SAVE DSKn.PROGNAME

256DEMO from the XB256 package is included on the compiler disk and will be used here as the
example. You are encouraged to load 256DEMO and then follow these steps on your own computer.

(All the operations below are done in Extended BASIC.)

With the program loaded in XB, create the merge format file required by the compiler: (If you are
compiling a TI BASIC program you should still load it into XB. Even if it won't run in XB, you can
still save it in merge format.)
SAVE DSKn.256DEMO-M,MERGE<enter>
It's easy to forget to add the MERGE, which confuses the compiler later on. When you do this using a
Horizon Ram disk you will find that you then cannot SAVE DSK3.256DEMO-M,MERGE without first
doing DELETE "DSK3.256DEMO-M"

Put the compiler disk into drive #1, then Quit with <Fctn => and select Extended BASIC; or from XB
type: RUN "DSK1.LOAD"<enter>

Page 2

You will get the following screen:

Press 1 to load the compiler.

As you go through the next menu you will be prompted for several things: the XB file to be compiled,
the assembly output file name, the location of the runtime routines, and whether you are using CRAWL
or CHDEFD. The screen-shot below shows how it should look after you have entered the file names:

If the output file has the .TXT extension then the compiler assumes you are
running in emulation and will use .TXT for the runtime routines.

Location of runtime routines

Enter “Y” to begin compiling if everything is as you want, otherwise enter N to start over.

The compiler will compile the program. When finished you are again presented with the main compiler
menu. If you press 2 the assembler will load via Funnelweb. There are two advantages to using
Funnelweb. First, it runs out of Extended BASIC so you don't have to insert the E/A cartridge.
Second, the assembly source code file name that you just made appears on the screen when you get to
the assembler. Please note that this is not the complete Funnelweb package. Nothing loads except the
assembler and a disk catalog utility. The disk catalog utility can be accessed by pressing Fctn 7. You
can exit the disk catalog by pressing Ctrl =. Other assemblers can be used. Classic 99 has one built
into the E/A cartridge. Win994a includes Asm994a as part of the package. This runs almost instantly.
The source code requires the .TXT file extension, and the runtime routines and the source code must be
in the same folder. Using Asm994a is described on page 12.

If you are running the assembler out of the compiler, press 2, then press 2 three more times which
should take you to the assembler.(If the word processor menu appears just press the space bar to bring
up the assembly language menu)

You will be prompted for the source file name, the object file name that the assembler will create and
then some options. Use the space bar to erase the “C” under options but be sure to leave the “R”

Page 3

When done you should see a screen something like this:

if running in emulation can have .TXT extension

if running in emulation can have .OBJ extension

remove the “C” option.

Press <Fctn 6> to proceed or <Fctn 8> to redo.

The assembler will assemble the program. Be sure the runtime routines (RUNTIME1 to RUNTIME7
on the compiler disk; or RUNTIME1.TXT to RUNTIME7.TXT if you are using an emulator) are in the
drive you said they would be! Make sure your disk has room on it for the assembly source file, which
can be rather large. When assembling I've received a number of DSR error messages which have
perplexed me until I realized that the disk was full.

When the assembler has finished, you should get a message saying:
“0000errors, Press ENTER to continue”
At this point press <Enter> and then “quit”. From the TI title screen select XB.

With the compiler disk in drive 1, wait for the compiler menu, then press 3 to run the compiler loader.

You will receive the following prompt:
Enter filename to be loaded:
Type the name of the object code file the assembler just created and press enter
DSKn.FILENAME-O<enter>

The compiler loader will load the object file into memory and create a program that will run via XB.
When the loader is done you will see a screen like this:

Follow the prompts to save the program in an XB compatible format or to save it into an EA5
compatible format. Change the disk numbers if you want to save to a different drive number.

Now you should be able to RUN the program.

Page 4

Differences from Extended BASIC

An ideal compiler would be able to take any Extended BASIC program and compile it with no changes
necessary so that it would run exactly the same only faster. This compiler falls short of that ideal, but
does come close.

Following is a summary of the major differences between the compiler and Extended BASIC.

The biggest difference that you will have to deal with is that all numbers are integers from -32768 to
32767.
Here are some examples showing how the compiled code differs from the XB code:
32767+1=32768 in BASIC
32767+1=-32768 in the compiled code
200*200=40000 in BASIC; -25536 in compiled code because of the integer arithmetic.
If an operation such as dividing or SQR can give a non integer result, then you should use INT in the
BASIC program to be sure that the BASIC and compiled programs function the same.

Because RND returns a number between 0 and 1, the INT of RND is always 0. Because of this, the
following line of code won't work properly in the compiled code:.10 IF RND>.5 THEN 100 ELSE 200
There is a work around built into the compiler that deals with this problem. You have to multiply the
RND by some number and then INT the result. Instead of the example above you should use:
10 IF INT(RND*2)=1 THEN 100 ELSE 200
This gives either a 0 or a 1 in both Extended BASIC and the compiled code.

The timing of delays loops has to be modified. FOR I=1 TO 500::NEXT I gives a delay of several
seconds in XB or BASIC; a fraction of a second in the compiled code. The best way to do a delay is to
use CALL SOUND. For a 2 second delay you would use CALL SOUND(2000,110,30)::CALL
SOUND(1,110,30). Neither XB nor the compiler can process the second call sound until the first has
finished, so you get the full 2 second delay. This method makes it possible to create delays that work
the same in XB or compiled code.

IF-THEN-ELSE will only work with line numbers. See the discussion below for ways to partially work
around this limitation.

Nested arrays cannot be used. See discussion below.

User defined subprograms are not supported.

Trig functions, LOG and DEF not supported.

Speech is not supported.

Assembly language subroutines cannot be used except for those included in XB256.

Only one variable can be assigned at a time in a LET statement. A line like:
10 A$,B$,C$=”B” will crash the compiler.

Page 5

Supported Instructions

Following is a list of the TI Extended BASIC operations supported by the compiler:

Multiple statement lines can be used, with the statements separated with a double colon.
Parentheses can be used to change the mathematical hierarchy used to evaluate expressions.

The arithmetic operators + - * / ^ work as they do in XB within the limits of integer arithmetic.
Remember that because of the integer arithmetic, dividing 5/2 will give 2, not 2.5. You can use INT in
the XB program when dividing (for example INT(5/2) to be certain that XB and the compiler give the
same results.

The logic operators NOT, AND, XOR, OR work the same as in XB.

The relational operators < > = <> <= >= work the same as in XB.

GOTO and GO TO
GOSUB and GO SUB
ON-GOTO and ON-GO TO
ON-GOSUB and ON-GO SUB
RETURN
END
STOP
FOR-TO-STEP – The step is optional; +1 is assumed if no step is specified.
NEXT
READ
DATA – But do not GOTO a DATA statement!
RESTORE – But RESTORE cannot point to a comment; it must point to a DATA statement

ABS
MAX
MIN
INT
SGN
SQR – gives same number as INT(SQR(N)) in XB
ASC
LEN
POS
VAL
CHR$
SEG$
STR$
RPT$ – the string is truncated if over 255 characters and no warning is given.

RANDOMIZE can be used, but has no effect; it is done automatically
RND returns a value of 0. RND is only useful when it is multiplied by another number. i.e.
INT(RND*6) gives the same results (0,1,2,3,4,5) when compiled as it does when used in XB. The
order is not important – it can be (RND*6) or (6*RND)

String concatenation (i.e. A$&B$) works the same as in XB. The string is truncated if over 255
characters but no warning is given.

Page 6

IF-THEN-ELSE will only work with line numbers, like in TI BASIC. The more advanced XB style of
IF-THEN-ELSE is not supported. Being able to use multiple statements in a line provides ways to
partially work around this limitation:
10 IF X>3 THEN Y=7::Z=19 can be changed to:
10 IF X<=3 THEN 20::Y=7::Z=19
Another example:
10 IF Q=5 THEN X=8::Y=14::Z=23 ELSE X=11::Y=4::Z=9 can be changed to:
10 IF Q=5 THEN 20::X=11::Y=4::Z=9::GOTO 30 (XB is happy with no ELSE here)
20 X=8::Y=14::Z=23
30 !go on

INPUT works almost exactly like in XB, with the following differences. You can use the optional
prompt. You can input more than one variable, but you must use the optional prompt to do this, even if
it is just a question mark.. If inputting more than one variable, data being inputted is separated by the
first comma the compiler comes to. Quotation marks will not behave as they do in XB. Rather, they
are simply input as part of the string. You cannot use quotation marks to input leading or trailing
spaces.
LINPUT works exactly like in XB.
ACCEPT works almost exactly like it does in XB. AT, BEEP, ERASE ALL, SIZE and VALIDATE
are all supported with one difference: VALIDATE requires that you provide a string expression.,
which can be numbers, upper case characters, etc. UALPHA, DIGIT, NUMERIC are not supported.

PRINT works like TI Extended BASIC. You can use TAB, commas, semicolons and colons.
DISPLAY works just like in XB. You can use AT(row,col), BEEP, ERASE ALL, and SIZE(length) as
well as TAB, commas, semicolons and colons. DISPLAY USING is not supported.

DIM is optional, as it is in XB, but using it can reduce size of the compiled program.
OPTION BASE
ARRAY LIMITATION – Important!! The program being compiled cannot use nested arrays. For
example, if you have the two arrays DIM A(10),DIM B(10); you can use Q=A(X+Y-Z) but you can't
nest the arrays like this: Q=A(B(7)). Use of nested arrays will cause the compiled program to crash!!!
For the above example you have to split up the statement something like this:
X=B(7)::Q=A(X)

The following CALL subprograms function just like in Extended BASIC except as noted:

CALL COLOR
CALL CLEAR
CALL SCREEN - saves the screen colors like CALL LINK(“SCREEN”) in XB256
CALL CHAR
CALL HCHAR
CALL VCHAR
CALL SOUND - cannot handle frequencies greater than 32767. (Neither can my ears!)
CALL GCHAR
CALL KEY
CALL JOYST
CALL CHARPAT
CALL CHARSET
CALL SPRITE
CALL MAGNIFY
CALL DISTANCE

Page 7

CALL COINC
CALL LOCATE
CALL DELSPRITE
CALL POSITION
CALL PATTERN
CALL MOTION
CALL PEEK
CALL LOAD – can only be used to load values in RAM. Will not load assembly language subroutines.
CALL LINK – only works with the assembly language subroutines provided by XB256.

All the assembly language subroutines in XB256 are supported except for the disk catalog program.

LET is optional
REM – All remarks are removed from the compiled program, but you can GOTO a REM statement just
like in XB. Use of REM will not increase the size of the compiled program.
! – the exclamation point for “remark” works just like the REM statement.

From the command mode in Extended BASIC:
CALL LINK("RUN") functions the same as RUN in XB. You cannot use RUN or RUN line # within a
program.
CALL LINK("CON") functions the same as CON in XB
<FCTN 4> breaks the program as in XB except during INPUT or ACCEPT, or when running in EA5.

Peripheral access is now supported for DISPLAY, VARIABLE files. See page 10 for more
information.

NOT SUPPORTED:

RUN or RUN line #.
DEF
ATN
COS
EXP
LOG
SIN
TAN
DISPLAY USING

The following have no meaning in a compiled program:
LIST
NUM
RES
BREAK
UNBREAK
CON – use CALL LINK("CON") if running the compiled program from XB.
TRACE
UNTRACE
EDIT

Page 8

Embedding SINE values in a string:

Due to the integer arithmetic, trig functions are not supported by the compiler. However, there is a way
to use them in a program. You can produce a 91 byte long MERGE format program line that contains a
string with the values for sine from 0 to 90 degrees multiplied by 255, then use SEG$ to extract the sine
value for any degree from 0 to 90 and convert it to a number with ASC. Such a string would contain
characters that cannot be input from the keyboard, so we have to use a program to generate it.

The following program can be used to generate a merge format file that contains the following program
line:

10000 S$=”a string containing 91 values for sine from 0 to 90,
multiplied by 255”

10 OPEN #1:“DSK3.SINE255”,DI 100
SPLAY ,VARIABLE 163,OUTPUT
19 A$=CHR$(39)&CHR$(16)&CHR$ Line number - 39*256+16=10000
(83)&CHR$(36)&CHR$(190)&CHR$ S$ and =
(199)&CHR$(91) string constant; length of string
20 FOR ANGLE =0 TO 90
40 SINE=INT(255*SIN(ANGLE*PI convert from radians to degrees and multiply
/180)+.5) by 255
50 A$=A$&CHR$(SINE) keep building string
80 NEXT ANGLE
90 A$=A$&CHR$(0) a zero at the end of the string
100 PRINT #1:A$
105 A$=CHR$(255)&CHR$(255)::
 PRINT #1:A$::PRINT #1:A$ Write >FFFF twice to write EOF
110 CLOSE #1

Let's say you wanted to launch a sprite with a velocity (VEL) and at an angle(ANG) between 0 and 90
degrees . (0 degrees is to the right, 90 degrees is straight up)
The column velocity (CVEL) is given by: VEL*COS(30) and the row velocity (RVEL) is given by:
-VEL*SIN(30). But what do we do about the missing COS functions? Well, it turns out that COS(ang)
is the same as SIN(90-ang), so....
You could run the above program, type NEW, then merge SINE255. Then add line 10010 to get the
following subroutine:

10000 S$=”a string containin
g 91 values for sine from 0 t
o 90, multiplied by 255”
10010 RVEL=INT(-VEL*ASC(SEG$
(S$,ANG+1,1))/255):: CVEL=IN
T(VEL*ASC(SEG$(S$,91-ANG,1))
/255):: RETURN

Page 9

Save this in MERGE format for future use. You would call this from an XB program something like
this:

10 VEL=50::ANG=53::GOSUB 10000::CALL MOTION(#1,RVEL,CVEL)

The above subroutine is included on the compiler disk under the file name “SINE255”

The program above beginning with 10 OPEN #1 should have enough comments to give you ideas on
how to write something similar that can generate strings containing character definitions, sprite data, or
sound lists. You should know that the strings generated contain characters that cannot be input from
the keyboard. These will run fine, but XB will complain if you try to edit the line. Besides speed, one
advantage to using a string like this for defining characters is that the string is more compact. It uses 8
bytes per character and the normal CALL CHAR uses 16 bytes per character. But you lose the ability
to easily edit the line or even to understand what is in it. The COMPRESS utility in XB256 automates
the creation of this type of DATA line.

Disk Access

Disk and other peripheral access is now supported with some limitations:
DISPLAY, VARIABLE is the only file type recognized, but you can use any length desired from DV1
to DV254.
Up to three files can be open at a time. You must use #1, #2, or #3 – do not use other file numbers.
You can only use colons in a print statement. Commas and semicolons will not save as in XB.
10 PRINT #1:”Now, is, the, time “ will print the entire string contained in the quotes.
20 PRINT #2:”Hello”:”World” or 20 PRINT #2:”Hello”::PRINT #2:”World” are equivalent.
Use LINPUT for reading strings – INPUT will be treated as LINPUT if used
LINPUT will read the entire entry including any ASCII characters (like in XB)
Use INPUT for reading numbers (like in XB)
Specify INPUT or OUTPUT when opening a peripheral for reading or writing files.

Checking for errors

Error checking only works with peripheral access. It should be set up just like in XB with the following
limitations:

ON ERROR line number transfers control to the desired line number
If you are not using ON ERROR and encounter a disk error the program will end, but without printing
the disk error message as in XB.

RETURN line number – only return to a line number. Do not use RETURN or RETURN NEXT

Other peripheral devices should work if they can use DISPLAY VARIABLE format.

Page 10

Adjusting the timing in a game program

One frustration in developing an XB program intended for compilation is that is can be rather
tedious to adjust the speed of the gameplay. You try a value in a FOR/NEXT loop, save the
program, compile, assemble, load, only to find that it is too fast. Then you go back to XB, try
a larger value, repeat the process; find that it is still too fast, try another value, etc, etc.

If you are using XB256 to develop the game there is an easy way to streamline the process.
Let's say you are working in screen2. All you have to do is set up a “hot key” to go to a
diagnostic menu in screen1, where variables can be modified without disturbing screen2.
When done simply return to screen2 and resume where you left off.

In the simple demo program below, lines 100-200 define a ball and put it on the screen. The
ball can be moved with the ESDX keys. If you press <Fctn 1> line 160 will go to line 210
where the delay value can be modified. After pressing <Enter> control returns to the main
program loop with the modified delay value.

100 CALL LINK("CHAR2",65,"3C7EFFFFFFFF7E3C"):: R=12 :: C=16 :: DLY=1
110 CALL LINK("SCRN2")
120 CALL HCHAR(R,C,65)
130 FOR I=1 TO DLY
140 CALL KEY(0,K,S):: IF S=1 THEN 160
150 NEXT I
160 IF K=3 THEN 210
170 RN=R-(K=69)*(R>1)+(K=88)*(R<24):: CN=C-(K=83)*(C>1)+(K=68)*(C<32)
190 IF RN=R AND CN=C THEN 130
200 CALL HCHAR(R,C,32):: R=RN :: C=CN :: GOTO 120
210 CALL LINK("SCRN1"):: CALL CLEAR :: INPUT "DELAY VALUE? ":DLY ::
GOTO 110

Page 11

In case of trouble

Here are some steps that you can take to try to sort things out if there is a problem with the compiler.

Sometimes the compiler does not like one or more of the statements in the XB program. Normally it
will say "compiling Line 10" (or whatever the first line number is). If successful in compiling that line
it will then say "compiling Line 20" and so on until it is done. If it gets stuck on a line number then
there is something in that line that it doesn't like. Check the XB program and try to see which statement
is unsupported. If you want to see this in action (actually in inaction) try to compile this program:
10 OPEN #1:"DSK3.TEST" and you will see it get stuck on line 10

The compiler will report if it was able able to successfully compile your XB program. If so, choose
option 2 to assemble the code. The assembler might issue an error message during the assembly
process. If so then the error is probably in the source code file the compiler just made, not in the
runtime routines. The message will be something like this: undefined symbol 0141. This
tells you that there is something wrong in line 141 of the compiled source code. Examine it to see if
you have used an unsupported statement or if there is something that doesn't look right. You can use a
text editor, the editor for the E/A cart, or TI99dir which lets you view a file. Except for B @RUNEA5
there should be nothing but DATA statements, something like the following compiled code:

 DEF RUN,CON
RUNEA B @RUNEA5
FRSTLN
L100
FOR1
 DATA FOR,NV1,NC1,NC2,ONE,0,0
 DATA COLOR,NV1,NC3,NC4
 DATA NEXT,FOR1+2
L110
 DATA DISPLY,NC1,NC5,SC1,NC6,NC7
L130
 DATA AT,NC8,NC9
 DATA SIZE,NC3
 DATA ACCEPT,SV1

LASTLN DATA STOP
- - - - (lines are omitted)- - - -
SC0
SC1 DATA SC1+2
 BYTE 9,98,97,99,107,103,114,111,117,110
 EVEN
SV0
SV1 DATA 0 Z$
- - - - (lines are omitted)- - - -
 COPY "DSK1.RUNTIME1"
 END

The code the compiler creates should be understandable when compared to the original XB program.
Look for a missing DATA statement or something that doesn't look right. If the assembler gives a line
number you should be able to find the error easily. I like using TI99dir to view files, but when you
look at a file there are no line numbers and you have to count the lines by hand. If you save them with
the .TXT extension then you can view them with a text editor such as Notepad or Notepad++.

Page 12

Using Asm994a to assemble your source code

The source code created by the compiler can be assembled using Cory Burr's Asm994a which is part of
the Win994a emulator package. Here's how to do it:

The output file and the runtime routines must be in the
same folder. I chose DSK1 to save the source code
along with the compiler.

the output file name should have a .TXT extension

erase the line telling where to load runtime routines

After the source code has been created, load up Asm994a

Click Add Source File
and choose the source
code file you just made.
Check Def Regs and
Produce HEX Obj file

The suggested file name
will have the .obj extension
and be in the same folder
as the source code file.

Click Start Assembly and
the program should be
assembled almost instantly.

Then load the object code
the usual way.

Page 13

