PLAYGROUND

Run assembly language on an unexpanded TI1-99/4A
by Harry Wilhelm
November 2013 — January 2014

Recently Atariage printed a program by James Abbatiello called Escape the BASIC sandbox. The
program was a simple loop that printed “Hello, World!” shifted by one position every loop so that the
text scrolled down the screen. The intriguing thing about the program is that it did this using assembly
language on an unexpanded TI-99/4a. Abbatiello found a way to exploit quirks in the BASIC
interpreter to load a file name that contained an assembly language program and then run the program.
TI did their very best to make it impossible to run assembly language in TI BASIC, but Abbatiello
proved that it actually could be done. His idea took a just a few tentative steps out of the sandbox but
once that happened there was no looking back. PLAYGROUND builds on his idea and makes it
possible to run complicated assembly language programs using nothing but an unexpanded TI1-99/4a
and a cassette player. Now that we have left the sandbox behind we can join the big kids in the
playground.

A program written for playground can be run on any TI system directly from TI BASIC; it can also be
run from Extended BASIC; as an E/AS5 program; loaded into a supercart; and can even be made into an
actual cartridge. One motivation for writing programs for playground is to see just how far you can
push the unexpanded TI-99. It is fun to see what can be done with only 256 bytes of RAM; even more
so to do something that TI tried so hard to make impossible. It would not be practical to write
programs for playground on an unexpanded TI-99, so you will need either the Editor/Assembler or the
MiniMemory cartridge plus 32K for development work. Once created, the program can be loaded from
cassette and run on an unexpanded TI. This manual assumes the reader has a working knowledge of
TMS9900 assembly language.

HOW PLAYGROUND USES MEMORY

The unexpanded TI-99 has 16K of VDP memory but only 256 bytes of RAM (the scratchpad) can be
directly accessed by the 9900 microprocessor. An assembly language program can be stored in the
VDP ram but cannot be run directly from there. To run a program of any complexity, some sort of
paging is required to load the various segments of the program into the scratchpad. Naturally, the
software loading the page must be separate from the page being loaded. Additionally, certain built in
console routines are needed to scan the keyboard, move sprites automatically, and play a soundlist.
These routines use the interrupt workspace at >8C00 and the GPL workspace at >8E00 plus bytes from
>8372 to >837D. Also, the assembly program being run by playground requires its own workspace.
With these factors in mind, this memory map of the scratchpad as used by playground will make sense.

SCRATCHPAD MEMORY MAP

>8300 - >8371 114 bytes available for a program page. (KSCAN and GPLLNK use
memory from >836A to >8371)

>8372 - >837D System use for keyscan, sprite motion, etc. >8373 is GPL substack
pointer; >8378 is the random number seed

>837E - >83A1 36 bytes - Page loader

>83A2 - >83C1 Workspace (R15 overlaps into RO of interrupt workspace)

>83C0O - >83DF Interrupt workspace. (RO not available) R8 and R9 (>83D@ and
>83D2) are used to store return address for a subroutine.

>83E0 - >83FF GPL workspace

PLAYGROUND WORKSPACE AT >83A2

Your program can use RO to R10 as needed

R10 = >8C00 VDPWD (VDP write data register). You can change this if desired.
R11 and R12 can be used within a page but are changed when loading a new page.
R13 — R15 are used by the page loader and must not be changed:

R13 = offset to be added to a program address to find the address in VDP

R14 = >8800 VDPRD (VDP read data register)
R15 = >8C02 VDPWA (VDP write address register)
LOADING A PAGE

A program consists of pages of code that are loaded as needed into the scratchpad memory starting at
>8300. A page must be no longer than 114 bytes. After loading a page, playground will branch to
>8300 which is the first line of code. (At start-up playground will load the first page of code in the
program and branch to the first line.) Each page of code is preceded by one word containing the length
of the page. A new page is loaded with the following code:

BL @PAGE
DATA PGNAME (The name of the page)

As an example, below is a commented page of code from the DEMO program. The page loads 16
bytes of data to the sprite motion table at >0780 in the VDP ram, then loads a page named RSLOOP.

UFOMOT DATA UFOMOE-UFOMOS Length - Pointer to end minus pointer to start

UFOMOS LI RO, >4780 >0780 with 2™ bit set
MOVB @WKSP+1, *R15 move 1lsb to VDPWA
MOVB RO, *R15 move msb to VDPWA

LI R1,UFOMDT-UFOMOS+>8300 make R1 point to UFOMDT
*Be sure you understand this way to find data in your program!

LI RO,16 16 bytes to write
UFOMLP MOVB *R1+, *R10 a standard loop in assembly - R10 contains VDPWD
DEC RO
JNE UFOMLP loop till done
LI RO,>0400 4 sprites in motion
MOVB RO, @>837A and move to >837A
BL @PAGE load and run next page
DATA RSLOOP which is RSLOOP (reset the loop)

UFOMDT DATA >FDF2,>0000,>FFE0,>0000,>FE08,>0000,>0118,>0000 UFO0 motion data
UFOMOE label for end of program-I like to append “S” at
* start and “E” at the end.

SUBROUTINES

In general subroutines cannot be used via the usual 9900 methods. Because all code must run from
>8300 the BLWP instruction is not useful except perhaps to a console routine. The BL instruction can
be used, but only within a page of code. You cannot BL outside of the page of code you are running.
The following method has been developed that lets you use one level of subroutines:

BL @SUB
DATA SBNAME (The name of the subroutine)

2

As an example, below is a commented subroutine that clears the screen. Notice that it uses its own
workspace and when the page is loaded registers RO to R3 are preloaded with data. Because this uses
its own workspace it does not effect the workspace of the calling program. Another way to avoid
changing the registers of the calling program is to use only R11 and R12, which the pageloader uses
when loading a new page.

CLEAR DATA CLEARE-CLEARS length of subroutine
CLEARS LWPI CLRWS-CLEARS+>8300 this shows how to find the workspace
MOVB @WKSP+1, *R1 sets the address to write to
MOVB RO, *R1 which is 0
NOP
CLRLP MOVB R2,@>8C00 \VDPWD
DEC R3 a normal loop in A/L
JNE CLRLP /
LWPI >83A2 back to the calling workspace
BL @SUBPAG
DATA RETURN load and run RETURN
CLRWS DATA >4000 RO = >0000 with bit 2 set
DATA >8C02 R1 = vdpwa
DATA >8000 R2 = space with offset
DATA 768 R3 = counter

CLEARE

A large subroutine may need to branch to another page of code. In this case you do not want to change

the return addresses that were previously stored. The following code will do this:
BL @SUBPAG
DATA SPNAME (The name of the subroutine page)

By using its own workspace, the example above is as close as you can get to a BLWP type of
subroutine. One advantage is that registers can be preloaded and will always have those values when
you call the subroutine. Be sure to restore the normal workspace (>83A2) before returning from the
subroutine.

RETURNING FROM A SUBROUTINE

The page below is used when you want to return from a subroutine. It sets up pointers so the page
loader can restore the calling page and return to the code at the right address. This must called with
SUBPAG to avoid changing the return addresses. It is used at the end of the CLEAR subroutine above.

RETURN DATA RETURE-RETURS

RETURS MOV @>83D0O,R11 Get page to return to
A R13,R11 Add VDP offset
MOVB @>83B9, *R15 1sb of R11 to VDPWA
MOVB R11, *R15 msb of R11 to VDPWA
MOV @>83D2,R11 position in page when sub was called
INCT R11 need to go to the next instruction
LI R12,>8300
JMP RETURS+>0094 jump to >8394
RETURE

THE DIFFERENCE BETWEEN BL @PAGE or BL @SUB or BL @SUBPAG
Each of these loads the page the same way. The difference is in how the return addresses are saved. If
your page will not use a subroutine then BL @SUBPAG will work fine and save two instructions.

SOURCE CODE FOR THE PAGELOADER

The source code for the pageloader is below. This may be helpful in understanding how it works.

*Pageloader code begins at >837E)

PAGE MOV *R11,@>83D0O stores address of page being loaded
SUB MOV R11, @>83D2 stores address within page calling sub routine
SUBPAG A R13, *R11 adjust to point to code in VDP
MOVB @1(R11), *R15 set address to read from
MOVB *R11, *R15 set address to read from
LI R12,>8300 load code starting at >8300
MOV R12,R11 entry point of page into R11
*(The RETURN subroutine skips all the above and jumps to the line below.)
MOVB *R14,@>839D puts length byte into LSB 2 lines below
PGLOOP MOVB *R14, *R12+ start to copy page out of VDP
CI R12,>8300 length byte of page was put in LSB
JNE PGLOOP loop till done
B *R11 branch to address contained in R11

CREATING A BASIC LOADER CONTAINING YOUR ASSEMBLY CODE

After writing the assembly language program you will need to create a BASIC program that contains
the embedded assembly program. First save the assembly source code, then assemble it to create object
code. Once the object code is created, with the E/A or minimemory cartridge in the slot and 32K of
memory expansion, type these lines: (Here the object code is DEMO-O)

CALL INIT

CALL LOAD("DSKn.DEMO-0") this will load the DEMO program starting at >A000

CALL LOAD("DSKn.MAKEBX-0") this loads the code that will embed DEMO in a BASIC
program (this code is AORG'd at >F000)

CALL LOAD(-31804,240) this runs MAKEBX and creates the BASIC program.

Then SAVE or RUN as you desire. If your program is long you may need to CALL FILES(1), then
NEW before loading to free up additional room. You can paste the above into BASIC using Classic99
if you want to avoid having to key it in. Use Paste, not Paste XB.

The BASIC program consists of two lines. Line 10 is a REM statement. This can be modified as you
desire. Other REM statements and even program statements can be added before line 20, but do not try
to edit line 20

RUNNING A PLAYGROUND PROGRAM IN EXTENDED BASIC

The BASIC program created above can be run from Extended BASIC. If there is no memory
expansion you can RUN it like any other XB program. If there is a memory expansion, it must be

turned off before running the program. The following line of code shows how to do this:
CALL INIT :: CALL LOAD(-31868,0,0):: RUN "DSK2.PROGRAM"

This can be part of a menu driven loader program or entered while in the immediate mode.

CONVERTING TO E/AS

Programs written for playground can be saved and run as a standard E/AS program. Load 3 files in this
order using the Load and Run option in the Editor/Assembler:

DSKn.MAKEEA1-0
DSKn.YOURPROG-0
DSKN.MAKEEAZ2 -0

Then save the EAS file in the usual way.
LOADING A PLAYGROUND PROGRAM INTO A SUPERCART

Programs written for playground can be loaded into a supercart with ram at >6000. To do this you first
make an E/AS program similar to what was done above. You need to change the name and length of
the program in the code in MAKEG6K 1-S then save the file and reassemble the code. Then load 3 files
in this order using the Load and Run option in the Editor Assembler:

DSKn.MAKE6K1-0
DSKn.YOURPROG-0
DSKn.MAKE6K2-0

Save the E/AS file in the usual way for future use. When you run the E/AS program the playground
program is loaded to the 6K ram of the supercart and the computer returns to the master title screen.
Press a key and your program will show up on the menu. This code can burned into a rom if you want
to make a physical cartridge.

TIPS ON CODING FOR PLAYGROUND

The source code DEMO-S.TXT, LIFE-S.TXT and SCOLORS-S.TXT are included in this package.
You can study these programs for examples of how to work within the confines of playground.

Your program should begin with the following equates:

PAGE EQU >837E
SUB EQU >8382
SUBPAG EQU >8386
WKSP EQU >83A2

None of the E/A utilities such as VSBW, VMBW, VSBR, VMBR, VWTR etc. are available. You can
write subroutines that perform the same functions as needed. Perhaps if enough people write programs
for playground a library of subroutines can be developed.

When you load assembly object code with CALL LOAD it is loaded into CPU memory starting at
>A000 and then is transferred from there to the VDP ram inside the BASIC loader program. R13 is
used when you need to find the address of data in the VDP ram. R13 points to the LSB of the length
byte which simplifies the page handler. In the demo program, a sound list is located at HONEYC. To
find this in VDP ram:

LI RO,HONEYC-1 subtract one so it points to the msb
A R13,R0 and now RO points to the start of the sound list in VDP

The 114 bytes of program space can contain a buffer as needed. It should be put at the end of the page
for example, a 32 byte buffer could be at >8352. You don't need to use BSS, but it is important to
count the bytes of code to make sure it does not overwrite the buffer. If it is short enough, you can load
another page without overwriting the bufter.

You will become proficient at counting the words in a page to see how many bytes it contains and to be
sure it will fit.

The sprite attribute table begins at >0300, which is also where the color table is. If your program uses
more than 3 sprites you should move the color table to >0800 so the sprite data does not conflict with
the color table.

With playground there is 16K of VDP ram that is available. This has to contain the screen image, the
color tables, character definitions, sprite data, etc. as well as your program. TI's decision to put the
character definitions where they did and use a screen offset of >60 makes sense if you want to
maximize the amount of program space that is available. When a playground program starts up it calls
the GROM routine at G27E3. This clear the screen (ASCII 32 with screen offset of >60), loads the
character sets and color tables, and sets the VDP registers. These are the same as the values used by TI
BASIC in the immediate mode.

SPEED OF EXECUTION

Less time spent loading pages means more time to execute the code. Loading a page takes 10 assembly
instructions plus 3 more for every byte loaded, so there is a slight speed advantage in making a page as
long as possible. This changes when you are using subroutines. The subroutine has to be loaded and
run, then the loader has to reload the calling page. If that page is short then less time has to be spend
loading it. If you need more room for your code, the workspaces from >83C2 to >83FF can be used.
You would first store their contents in VDP ram, then load your code in these areas. Be sure to restore
these workspaces before enabling interrupts or using keyscan.

DEBUGGING

Because all the code is is loaded to and run from >8300, it can be difficult to know where to set break
points. MAKEBX-O can help you know where to set breakpoints and the sizes of pages. In your code,
add page names to the DEF table with DEF PAGENAME. Then, when creating the embedded BASIC
program using MAKEBX-O you will get a list of up to 23 pages in the program that were added to the
DEF table. After the name of each page a breakpoint is shown, The breakpoint is the address of the
last byte of the page in VDP memory. To use this in Classic99 set a breakpoint with <Vxxxx and a
break will occur when that last byte is read from VDP and moved to the scratchpad. Then single step 3
times and you will be at the beginning of the page.

After the address for the breakpoint, the last address needed by the page is displayed. An asterisk is
appended to warn you if a page will be at >8372 or greater. Don't forget to account for the memory
used by buffers. Also, if a page scans the keyboard remember that you can only use up to >836E.

PLAYING A SOUND LIST

Playing a soundlist is easier in playground than in normal assembly code because the data is already in
the VDP ram. The code below will play the soundlist HONEYC.

HONEYS LI RO, HONEYC-1 pointer to soundlist - be sure to subtract 1
A R13,R0O RO now points to soundlist in VDP
MOV RO, @>83CC

LI R12,>0100
MOVB R12,@>83CE
SOCB R12,@>83FD

HONEYC
BYTE 9,133,42,144,166,8,176,204,31,223,18
and the rest of the sound list follows...

RANDOM NUMBERS

On the TI-99 the random number seed is normally located at >83C0. Playground overwrites that
address when it loads and also uses it as R15 of the workspace. The random number seed has been
moved to >8378. LIMI will increment >8379 60 times a second which does the same thing as
RANDOMIZE in BASIC.

Below is a subroutine used for generating a random number. This code can be used as a subroutine or
placed within a page if speed is important. This code has been adapted from the random number
routine in the console.

IR S S O S S R O S S O S

*RANDOM is a subroutine to generate a random number. *
*If you want a RND from @ to 5, RO should be 6 *
*The random number is returned in R1 *

R o Sk R R Rk kR R R Ik R Rk kR R Rk S R

RANDOM DATA RANDOE -RANDOS
RANDOS LI R11,>6FE5
MPY @>8378,R11
AI R12,>7AB9
MOV R12,@>8378
CLR R11
SWPB R12
RANDO2 DIV RO,R11
MOV R12,R1
BL @SUBPAG
DATA RETURN
RANDOE

KEYSCAN

Keyscan and GPL routines use the GPL substack pointer at >8373. When initialized, playground sets
this pointer to >68. This gives just enough room on the stack to use the GPL routines described below,
but it requires the memory locations >836A to >8371 for the stack. If you only want to use keyscan,
you can set the pointer to >6C which only requires >836E to >8371.

The following code is the equivalent of KSCAN in normal assembly code.

LWPI >83E0
MOV R11,@>836E store the return address
BL @>000E (keyscan uses both intws and gplws)
MOV @>836E,R11 restore the return address
LWPI WKSP
GPL ACCESS

A GPLLNK subroutine has been written that can be used to give access to some of the useful GPL

routines built into the console. Put the address of the GPL routine in RO, then:
BL @SUB
DATA GPLLNK

The GPL routine must be set up as described below.

USEFUL GPL ROUTINES:

No memory setup is needed for the four routines below.

>0034 Accept tone

>0036 Bad response tone

>4D00 scroll screen one line; fill bottom line with 2 edge characters, 28 spaces, 2 edge characters.
>27EA Load characters, colors, registers, etc. to same values as TI BASIC. (Does not clear screen)

To load character sets, set >834A to point to the address in VDP where the characters will be loaded.
>0016 Load character set - large capital letters

>0018 Load character set - normal size capital letters

>004A Load character set - lower case letters

EDITOR

The GPLLNK subroutine has been modified to let you access the line editor used by BASIC. To use

this, place the starting address in VDP into RO, place the ending address into R1, then:
BL @SUB
DATA EDITOR

If the ending address is off the bottom of the screen then the line editor will scroll the screen as needed.
If you want to use the scrolling feature you should use the edge character (>1F or 31) as in TI BASIC.
If you are not using the scrolling feature the edge characters are optional. The line editor uses the
normal BASIC character offset (>60 or 96). You will find this subroutine in the section below.

USEFUL SUBROUTINES

Copy and paste these into your program as needed.
This is part of the playground package — filename is USEFULSUBS.TXT

khkhkkhkhkhhhkhhhkhhhkhhhhhhhhdhhhdhhhdhhhhhhhhhkhhhhhhhhdhhhdhhhdhhhddhddhrddrrdrxkx*x*x

*MOVVDP a subroutine to move bytes from one location to *
*another in the VDP ram. *
*Put address to move from in RO *
*Put address to move to in R1 *
*Put number of bytes in R2 *
*uses r11 & r12 does not modify R2 calling; RO & R1 inc'd by r2 count *
kkkkkhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkkhkhhhkhkhkhkhkkhkhhkhkhkhkhkkhkhkkhkhkhkrkhkkkkhkkhkhkhk khkkkkkkhk k k kkkkkk****%
MOVVDP DATA MOVVDE-MOVVDS
MOVVDS ORI R1,>4000 set bit in R1 so we can write

MOV R2,R12
MOVVD1 MOVB @WKSP+1, *R15 start reading bytes of text

MOVB RO, *R15

INC RO

MOVB *R14,R11 read a byte from VDP

MOVB @WKSP+3, *R15 1sb R1

MOVB R1, *R15 msb R1

INC R1

MOVB R11, *R10 move byte into VDP

DEC R12

JNE MOVVD1

BL @SUBPAG

DATA RETURN
MOVVDE
kkkhkkhkhkhkhkhkkhkhkhkhhhhhkhkhkhkhkhhhhkhkhkhkhkhkhhhhhkhkhkhkhkhkhkhhkhkhkhkkhkhkkhkhkhk khkhkkkkkkk k k *,k**x*%
*GPLLNK is adapted from millers graphics universal GPL & DSR link *
*Put GPL routine into RO and call as a subroutine *

LR I R I I R I R I I I S I I R I I I R S I I R

GPLLNK DATA GPLLNE-GPLLNS

GPLLNS LWPI >83E0 change to GPL workspace
MOV @>0050,R4 put >0864 into GPLWS4
MOV @>83A2,R6 GPL routine is in RO. Move into GPLWS6
BL *R4 push grom address to substack (routine @ >0864)
MOV @>8300+GXMLAD-GPLLNS, @>8302(R4) put >00E8 onto stack
INCT @>8373 and INC stack pointer
B @>0060 to GPL interpreter
*>831C below
DATA XMLRTN-GPLLNS+>8300 pointer to return from GPLLNK
* this MUST be at >831C !!!
GXMLAD DATA >1675 grom at >1675 contains >OQFFE in reg TI and V2.2
XMLRTN MOV @>166C, R4 puts >0842 into R4
BL *R4
LWPI WKSP
LI R11,>C81B some gpl routines trash >837E
MOV R11,@>837E
BL @SUBPAG

DATA RETURN

GPLLNE

EE R I R R I SR I R I R I R I R I R R I S R I I S R R I R

*RETURN - a SUBPAG to return from a subroutine. Must have to use subs. *
EIE IR R I R I I I I b I b I b I S I b b I I I I I I b I b I b I A I I I b I b I b I b I b b I b S b I I b I b I b b I b I b b

RETURN DATA RETURE-RETURS

RETURS MOV @>83D0O,R11 Get page to return to
A R13,R11 Add VDP offset
MOVB @>83B9, *R15 1sb of R11
MOVB R11, *R15 msb of R11l

MOV @>83D2,R11 position in page when sub was called

INCT R11 next instruction

LI R12,>8300

JMP RETURS+>0094 jump to >8394
RETURE
khkhkkhkhkkhkhkkhkdhhkdhhkdhkhdhhkkhkhkkhkhhkdhhkdhkhdhhdhkhokhkhhkhhkdhhkdhdhdkhkkhkhokhkhkhkdhhkddrddxdhrhhkhdkkdkkdx*x
*PRTEXT is a subroutine to print text on the screen *
*Pointer to text is in RO - uses ril1l and ri2 *
*set up with LI RO, TEXT-1 then A R13,R0O - then call the sub *
*TEXT BYTE 10,13 row and column to start printing *
* TEXT '3 COLORS' *
* BYTE 11,13 row and column *
* TEXT '4 COLORS' *
* BYTE O flag for end of text *
* EVEN *
kkhkhkkhkhkkhkhkkhkhkhkdhhkkhkhkkhkhkkhkhkkhkhhkdhhkdhkhdhkhkdhkhhkhhkhhkdhhkdhdkhdhkhkhkhokhkhkhkhkhkdkdrdhkhrdhrkhkhkhhhdkkdxx
PRTEXT DATA PRTEXE-PRTEXS
PRTEXS MOVB @WKSP+1, *R15 will read from VDP from address in RO

MOVB RO, *R15

INC RO point to next byte

CLR R11

MOVB *R14,R11 read the byte

JEQ PRTEXX if EQ then at end of text so return
PRTEX2 CI R11,>2000 if LT >20 then a row, need to set up pointer

JL GTPNTR
PRTEX3 AI R11,>6000 screen offset

MOVB @WKSP+25, *R15 1sb R12

MOVB R12, *R15 msb R12

INC R12

MOVB R11, *R10 print character to screen

JMP PRTEXS
GTPNTR MOV R11,R12

SRL R12,3

AI R12,>3FDF add >4000 and -33=SCREEN LOC

MOVB *R14,R11

SRL R11,8

A R11,R12

INC RO

JMP PRTEXS

PRTEXX BL @SUBPAG
DATA RETURN
PRTEXE

10

EE R I I R I I I S O S R R I I I I R I I S R S

*RANDOM is a subroutine to generate a random number *
*if you want a RND from @ to 5, RO should be 6 *
*the random number is returned in R1 *
kkhkhkkhkhkkhkhkkhkhkhkdhkhkdhkhkkhkhkkhkhkkhkhkhkhhkdhhkdhkhdhkhkhkhkkhkhkkhkhhkdhkdkdrdhkhrkhkhkhkhkhhkhdkkdx*x
RANDOM DATA RANDOE-RANDOS
RANDOS LI R11,>6FE5

MPY @>8378,R11

AI R12,>7AB9

MOV R12,@>8378

CLR R11

SWPB R12
RANDO2 DIV RO,R11

MOV R12,R1

BL @SUBPAG

DATA RETURN
RANDOE

ER R Sk S O R S S S R R S S S I O O I

*CLEAR is a sub to fill screen with spaces *
kkhkhkkhkhkkhkhkkhkkhkhkkhhkkhkhkhhkhhkhdhhkdhhkdhhkhkhkhhkkhhhdhhdhdhkhhkhhkhdhhdkkdx*x
CLEAR DATA CLEARE-CLEARS
CLEARS LI R11,>4000 1st screen position with 2nd bit set
MOVB @WKSP+23, *R15
MOVB R11, *R15
LI R11,>8000 a space with bias of >60
LT R12,768
CLEAR1 MOVB R11, *R10
DEC R12
JNE CLEAR1
BL @SUBPAG
DATA RETURN
CLEARE

hkhkhkkhkhkhhkhhhhkhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhdhdhkhdhrddrrhkrkk*x

*PRNUM is subroutine to print a number on the screen *
*RO= address on screen(prints right to left) *
*R1=number to print *
khkkkhhhkkhkhhkhkkhhhkhkhhkhkkhhhkhhhhkkhhhkhkdhdkkddhhxkhkdhkdxk dhxkhkdhk*x*,d*x*kk,kx*x%
PRNUM DATA PRNUME-PRNUMS
PRNUMS ORI RO, >4000 set bit 2

MOV R1,R11

LI R1,10
PRNUM1 MOV R11,R12

CLR R11

DIV R1,R11

JEQ PRNUMX

AI R12,>0090 to get ASCII plus offset

MOVB @WKSP+1, *R15

MOVB RO, *R15

DEC RO

MOVB @WKSP+25, *R10

JMP PRNUM1
PRNUMX BL @SUBPAG

DATA RETURN
PRNUME

11

EIE R I R I I O I R I O R I R I R R S R I R R R R I I R R I I I I R R S O

*EDITOR is an adaptation of MG universal GPL & DSR link *

*put start screen position into RO *
*put last screen position into R1-if off bottom will scroll as needed *
*Returns with R1 set to highest position actually used *
*uses BASIC character offset of >60 *

khkkhkkhkhkhkhkhhkhkhhhkhhhhkhhhkhhhhhhhhhkhhhhkhhhkhhhkhhhkhhhkhhhkhhhkhkhdkhkhkhkrkkhrkk kk**

EDITOR DATA EDITOE-EDITOS

EDITOS MOV RO, @>8320 put starting position into >8320
MOV R1, @>835E ending position goes into >835E
LWPI >83E0 GPLWS
MOV @>0050,R4 put >0864 into GPLWS4
*>8310
LI R6,>2A46 address of line editor to GPLWS6
BL *R4 push grom address to substack (routine @ >0864)
INCT @>8373 INC stack pointer
JMP H8322
*>831C below
DATA XMLRTN-EDITOS+>8300 pointer to return from GPLLNK MUST be at >831C
GXMLAD DATA >1675 grom at >1675 contains >OFFE in reg TI and V2.2
DATA © starting position goes here (>8320)
H8322 MOV @>8300+GXMLAD-EDITOS, @®>8302(R4) put >1675 onto stack
B @>0060 to GPL interpreter
XMLRT1 DATA >C81B >>>>>can remove if not scrolling<<<<<
XMLRTN MOV @>166C, R4 puts >0842 into R4
BL *R4
LWPI WKSP

MOV @>832A,R1
MOV @XMLRT1-EDITO0S+>8300,@>837E >>>>>can remove if not scrolling<<<<<

BL @SUBPAG

DATA RETURN
EDITOE

khkhkkhkhkhhhkhhhkhhhhhhkhhhhhhhhdhhhdhhhdhhhdhdhdhdhkhddhkhddrhkdrkk*x*x

*HCHAR (similar to BASIC subprogram) *
*RO=Screen address - ROW*32-1+COL-1 *
*R1=byte to print in MSB - can add offset if desired *
*R2=number of bytes to print *

Rk S b S O O R S b O S R R S S S R

HCHAR DATA HCHARE-HCHARS

HCHARS ORI RO, >4000 set bit so we can write

* Al R1,>6000 offset of >60 if desired

HCHAR1 DEC R2 one less byte to write
JLT HCHAR2

MOVB @>83A3, *R15 tell VDP what address to write to
MOVB R@, *R15 nonoonn

INC RO one position to right

MOVB R1, *R10 write the byte

CI RO, >4300 past bottom of screen?

JLT HCHAR1

LI RO,>4000 reset to upper left of screen
JMP HCHAR1

HCHAR2 BL @SUBPAG
DATA RETURN
HCHARE

12

EE R I I R I I I S O S R R I I I I R I I S R S

*VCHAR (similar to BASIC subprogram) *
*RO=Screen address - ROW*32-1+COL-1 *
R1=byte to print in MSB - can add offset if desired
*R2=number of bytes to print *
kkhkhkkhkhkkhkhkkhkhkhkdhkhdhhdhhkhkhkkhkhhkdhhkdhkdhdhdkhkkhkhkkhkhhkdhkddrdhrdhkhhkhdkhdxkdx*x
VCHAR DATA VCHARE-VCHARS

VCHARS ORI RO,>4000 set bit so we can write
* AI R1,>6000 offset of >60 if desired
VCHAR1 DEC R2

JLT VCHAR2

VCHAR2

VCHARE

MOVB @>83A3, *R15 tell VDP what address to write to
MOVB R@I *R15 nn mn

AI RO,>0020 down one row

MOVB R1, *R10 write the byte

CI RO,>4300

JLT VCHAR1

AI RO,>FDO1 up to top row and over one
CI RO,>4020

JLT VCHAR1

LI RO,>4000

JMP VCHAR1

BL @SUBPAG

DATA RETURN

khkkhkkhkhkhkhkhhkhkhhhkhhhkhhhkhhhkhhhhhhhhdhhhdhhhhhhkhdkhkhkhkrkkhkrkk kk***x

*BIT REVERSAL ROUTINE - SIMILAR TO ROUTINE AT GROM >Q03B *
*PUT ADDRESS IN RO AND # BYTES IN R1, THEN CALL THE SuB *

*USES R1,R2,R3 *
kkhkhkkhkhkkhkkhkhkkhkhkkhhkkhhkhhkhhkhhkhkkhhkhhkhhkhhkhhkhkkhhkhhkhhkhhkhhkhdhkhkhhkhhk,hkhhkkhk*k*x*%x
BITREV DATA BRRE-BRRS
BRRS MOVB @WKSP+1, *R15 1sb of RO
MOVB RO, *R15 msb of RO
ORI RO,>4000 will write back to this address
MOVB *R14,R3 read the byte
LI R11,8
BRR2 SRL R12,1 shift puts a zero in left hand bit
SLA R3,1
JNC BRR3 if a bit was not shifted out skip, else
AI R12,>8000 set left hand bit
BRR3 DEC R11
JNE BRR2 loop till 8 bits are done
MOVB @WKSP+1, *R15
MOVB RO, *R15
ANDI RO, >3FFF next operation will be a read
MOVB R12, *R10 write the byte
INC RO next byte in vdp
DEC R1
JNE BRRS
BL @SUBPAG
DATA RETURN
BRRE

13

LR R R I I I S I I R R I I R R I R R I S I I R R I S R

*SCROLL will scroll the screen and fill the bottom row with spaces. *
*Does not change user registers. This is faster than the GPLLNK scroll *
*Code is from >8300 to >8349; 32 byte buffer is at >8352 *
*Be careful to keep buffer and code separate when using a buffer this way. *

LR R R R R R R R R R R R R R R I R I S I I R I I S I I R

SCROLL

SCROLS

SCROL1

SCROL2

SCROL3

SCROL4

SCROLE

DATA SCROLE-SCROLS

LI R11,>0020

start with second line on screen

MOVB @WKSP+23, *R15

MOVB R11, *R15
LI R12,>8352

now are set up to read from VDP
will read to buffer starting at >8352

MOVB *R14, *R12+ \

CI R12,>8372
JNE SCROL2

AI R11,>3FEO0

read 32 bytes to buffer
/

up a line and with 2nd bit set

MOVB @WKSP+23, *R15

MOVB R11, *R15
LI R12,>8352

now are set up to write to VDP
buffer is here

MOVB *R12+, *R10 \

CI R12,>8372
JNE SCROL3

AI R11,>C040
CI R11,>0300
JLT SCROL1

LI R11,>8000
LI R12,32
MOVB R11, *R10
DEC R12

JNE SCROLA4

BL @SUBPAG
DATA RETURN

write 32 byte buffer to vdp
/

reset 2nd bit and down 2 lines
off bottom?
no, so keep scrolling
space with offset of >60
\

write 32 spaces to screen
/

end of code is at >8349; buffer starts at >8352

14

