
USOO6867781B1

(12) United States Patent (10) Patent No.: US 6,867,781 B1
Van Hook et al. (45) Date of Patent: Mar. 15, 2005

(54) GRAPHICS PIPELINE TOKEN OTHER PUBLICATIONS
SYNCHRONIZATIO
N N N GDC 2000: Advanced OpenGL Game Development, “A

(75) Inventors: Timothy J. Van Hook, Atherton, CA Practical and Robust Bump-mapping Technique for Today's
(US); Farhad Fouladi, Los Altos Hills, GPUs, by Mark Kilgard, Jul. 5, 2000, www.nvidia.com. ss
CA (US); Robert Moore, Heathrow, FL Technical Presentations: Texture Space Bump Mapping,
(US); Howard H. Cheng, Sammamish, Sim Dietrich, Nov. 10, 2000, www.nvidia.com.

Whitepapers: “Texture Addressing.” Sim Dietrich, Jan. 6,
WA (US) - 0

2000, www.nvidia.com.
(73) Assignee: Nintendo Co., Ltd., Kyoto (JP) White paper, Huddy, Richard, “The Efficient Use of Vertex

Buffers,” (Nov. 1, 2000).
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 (List continued on next page.)
U.S.C. 154(b) by 418 days. Primary Examiner Matthew C. Bella

Assistant Examiner-Hau Nguyen
(21) Appl. No.: 09/722,419 (74) Attorney, Agent, or Firm Nixon & Vanderhye P.C.

Related U.S. Application Data A graphics System including a custom graphics and audio
(60) givisional application No. 60/226.889, filed on Aug. 23, processor produces exciting 2D and 3D graphics and Sur

7 round Sound. The System includes a graphics and audio
(51) Int. Cl." .. G06T 1/20 processor including a 3D graphics pipeline and an audio
(52) U.S. Cl. 345/506; 34.5/522; 34.5/501; digital Signal processor. The graphics pipeline proceSSeS

345/502 graphics commands at different rates depending upon the
(58) Field of search2so so,555Si. type of operation being performed. This makes it difficult to

Synchronize pipeline operations with external operations
(56) References Cited (e.g., a graphics processor with a main processor). To Solve

U.S. PATENT DOCUMENTS this problem, a synchronization token including a program
mable data message is inserted into a graphics command

4,275,413 A 6/1981 Sakamoto et al. Stream Sent to a graphics pipeline. At a predetermined point
4,357,624 A 11/1982 Greenberg the bott f the pipeline, the token i tured and 4,388,620 A 6/1983. Sherman near line DOLLOm OI line pipeline, line LOKen 1S captured and a
4.425,559 A 1/1984 Sherman Signal is generated indicated the token has arrived. The

List continued t graphics command producer can look at the captured token
(List continued on next page.) to determine which of multiple possible tokens has been

FOREIGN PATENT DOCUMENTS captured, and can use the information to Synchronize a task
CA 2070934 12/1993 with the graphics pipeline. Applications include maintaining
EP O 637 813 A2 2/1995 memory coherence in memory shared between the 3D
EP 1 O74945 2/2001 graphics pipeline and a graphics command producer.
EP 1 O75 146 2/2001

(List continued on next page.)

InsertGFX
commands intopipeline

insertinique

(SetDrawsync)

ReadPE
oken Registe

(GetDrawSync)

Same as
generated data

msg

Performask
requiring

with pipeline

Generate unique
data message

data message into
pipeline astoken

808 2. Interrupt
Int?

Y

Synchronization

800

802

894

8:3

17 Claims, 8 Drawing Sheets

Example Graphics Pipeline
Synchronization

Routine. Using Token

US 6,867,781 B1
Page 2

4,463,380
4,491,836
4,570.233
4,586,038
4,600.919
4,615,013
4,625.289
4,653,012
4,658.247
4,692,880
4,695,943
4,710,876
4,725,831
4,768,148
4,785,395
4,790,025
4,808.988
4,812.988
4,817,175
4,829.295
4,829,452
4,833,601
4,855,934
4,862,392
4.866,637
4,888,712
4,897,806
4,901,064
4,907,174
4.914,729
4,918.625
4,935,879
4.945,500
4965,751
4,974,176
4,974,177
4.975,977
4989,138
5,003,496
5,016, 183
5,018,076
5,043,922
5,056,044
5,062,057
5,086,495
5,091967
5,097.427
5,136,664
5,144.291
5,163,126
5,170,468
5,179,638
5,204.944
5,224.208
5,239.624
5,241,658
5.255,353
5,268,995
5,268,996
5,278,948
5,307.450
5,315,692
5,345,541
5,353,424
5,357,579
5,361,386
5,363.475
5,377,313
5,392,385
5,392,393

U.S. PATENT DOCUMENTS

7/1984
1/1985
2/1986
4/1986
7/1986
9/1986
11/1986
3/1987
4/1987
9/1987
9/1987
12/1987
2/1988
8/1988
11/1988
12/1988
2/1989
3/1989
3/1989
5/1989
5/1989
5/1989
8/1989
8/1989
9/1989
12/1989
1/1990
2/1990
3/1990
4/1990
4/1990
6/1990
7/1990

10/1990
11/1990
11/1990
12/1990
1/1991
3/1991
5/1991
5/1991
8/1991
10/1991
10/1991
2/1992
2/1992
3/1992
8/1992
9/1992
11/1992
12/1992
1/1993
4/1993
6/1993
8/1993
8/1993
10/1993
12/1993
12/1993
1/1994
4/1994
5/1994
9/1994
10/1994
10/1994
11/1994
11/1994
12/1994
2/1995
2/1995

Hooks, Jr.
Collmeyer et al.
Yan et al.
Sims et al.
Stern
Yan et al.
Rockwood
Duffy et al.
Gharachorloo
Merz et al.
Keeley et al.
Cline et al.
Coleman
Keeley et al.
Keeley
Inoue et al.
Burke et al.
Duthuit et al.
Tenenbaum et al.
Hiroyuki
Kang et al.
Barlow et al.
Robinson
Steiner
Gonzalez-Lopez et al.
Barkans et al.
Cook et al.
Deering
Priem
Omori et al.
Yan
Ueda
Deering
Thayer et al.
Buchner et al.
Nishiguchi
Kurosu et al.
Radochonski
Hunt, Jr. et al.
Shyong
Johary et al.
Matsumoto
Frederickson et al.
Blacken et al.
Gray et al.
Ohsawa
Lathrop et al.
Bersack et al.
Nishizawa
Einkauf et al.
Shah et al.
Dawson et al.
Wolberg et al.
Miller, Jr. et al.
Cook et al.
Masterson et al.
Itoh
Diefendorff et al.
Steiner et al.
Luken, Jr.
Grossman
Hansen et al.
Kelley et al.
Partovi et al.
Buchner et al.
Watkins et al.
Baker et al.
Scheib
Evangelisti et al.
Deering

5,394,516
5,402,532
5,404,445
5,408.650
5,412,796
5,415,549
5,416.606
5,421,028
5,422,997
5.432.895
5,432,900
5,438,663
5.448,689
5.457.775
5,461,712
5,467,438
5,467,459
5,469,535
5,473.736
5,475,803
5.487,146
5,490,240
5,495,563
5,504,499
5,504,917
5,506,604
5.535,374
5,543,824
5,544.292
5,548,709
5,553,228
5,557,712
5,559954
5,561,746
5,561,752
5,563,989
5,566.285
5,573.402
5,579,456
5,582.451
5,586,234
5,593,350
5,594,854
5,600,763
5,606,650
5,607,157
5,608424
5,608,864
5,616,031
5,621867
5,628,686
5,638,535
5,644,364
5,649,082
5,650,955
5,651,104
5,657,045
5,657.443
5,657.478
5,659,671
5,659.673
5,659,715
5,664,162
5,666.439
5,678,037
5,682,522
5,684.941
5,687,304
5,687,357
5,691746

2/1995
3/1995
4/1995
4/1995
5/1995
5/1995
5/1995
5/1995
6/1995
7/1995
7/1995
8/1995
9/1995
10/1995
10/1995
11/1995
11/1995
11/1995
12/1995
12/1995
1/1996
2/1996
2/1996
4/1996
4/1996
4/1996
7/1996
8/1996
8/1996
8/1996
9/1996
9/1996
9/1996
10/1996
10/1996
10/1996
10/1996
11/1996
11/1996
12/1996
12/1996
1/1997
1/1997
2/1997
2/1997
3/1997
3/1997
3/1997
4/1997
4/1997
5/1997
6/1997
7/1997
7/1997
7/1997
7/1997
8/1997
8/1997
8/1997
8/1997
8/1997
8/1997
9/1997
9/1997
10/1997
10/1997
11/1997
11/1997
11/1997
11/1997

Winser
Epstein et al.
Matsumoto
Arsenault
Olive
Logg
Katayama et al.
Swanson
Nagashima
Myers
Rhodes et al.
Matsumoto et al.
Matsuo et al.
Johnson, Jr. et al.
Chelstowski et al.
Nishio et al.
Alexander et al.
Jarvis et al.
Young
Stearns et al.
Guttag et al.
Foran et al.
Winser
Horie et al.
Austin
Nally et al.
Olive
Priem et al.
Winser
Hannah et al.
Erb et al.
Guay
Sakoda et al.
Murata et al.
Jevans
Billyard
Okada
Gray
Cosman
Baumann
Sakuraba et al.
Bouton et al.
Baldwin et al.
Greene et al.
Kelley et al.
Nagashima
Takahashi et al.
Bindlish et al.
Logg
Murata et al.
Svancarek et al.
Rosenthal et al.
Kurtze et al.
Burns
Puar et al.
Cosman
Katsura et al.
Krech, Jr.
Recker et al.
Tannenbaum et al.
Nonoshita
Wu et al.
Dye
Ishida et al.
Osugi et al.
Huang et al.
Dye
Kiss
Priem
Shyu

US 6,867,781 B1
Page 3

5,694,143
5,696,892
5,701,444
5,703,806
5,706,481
5,706,482
5,714.981
5,721947
5,724,561
5,726,689
5,726.947
5.727,192
5,734,386
5,739,819
5,740,343
5,740,383
5,740,406
5,742,749
5,742,788
5,745,118
5,745,125
5,748,199
5,748,986
5,751,291
5,751.292
5,751.295
5,751,930
5,754,191
5,757.382
5,758,182
5,760.783
5,764,228
5,764.237
5,764.243
5,767.856
5,767858
5,768.626
5,768,629
5,774,133
5,777,623
5,777,629
5,781,927
5,791,994
5,798.770
5,801,706
5,801,711
5,801,716
5,801,720
5,805,175
5,805,868
5,808.619
5,808,630
5,809,219
5,809,278
5,815,165
5,815,166
5,818.456
5,819,017
5,821,940
5,821,949
5,822,516
5,828.382
5,828,383
5,828.907
5,831,624
5,831,625
5,831,640
5.835,096
5.835,792
5,838,334
5,844,576

12/1997
12/1997
12/1997
12/1997
1/1998
1/1998
2/1998
2/1998
3/1998
3/1998
3/1998
3/1998
3/1998
4/1998
4/1998
4/1998
4/1998
4/1998
4/1998
4/1998
4/1998
5/1998
5/1998
5/1998
5/1998
5/1998
5/1998
5/1998
5/1998
5/1998
6/1998
6/1998
6/1998
6/1998
6/1998
6/1998
6/1998
6/1998
6/1998
7/1998
7/1998
7/1998
8/1998
8/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
10/1998
10/1998
10/1998
10/1998
10/1998
10/1998
10/1998
10/1998
11/1998
11/1998
11/1998
11/1998
11/1998
11/1998
12/1998

Fielder et al.
Redmann et al.
Baldwin
Puar et al.
Hannah et al.
Matsushima et al.
Scott-Jackson et al.
Priem et al.
Tarolli et al.
Negishi et al.
Yamazaki et al.
Baldwin
Cosman
Bar-Nahum
Tarolli et al.
Nally et al.
Rosenthal et al.
Foran et al.
Priem et al.
Alcorn et al.
Deering et al.
Palm
Butterfield et al.
Olsen et al.
Emmot
Becklund et al.
Katsura et al.
Mills et al.
Lee
Rosenthal et al.
Migdal et al.
Baldwin
Kaneko
Baldwin
Peterson et al.
Kawase et al.
Munson et al.
Wise et al.
Neave et al.
Small
Baldwin
Wu et al.
Hirano et al.
Baldwin
Fujita et al.
Koss et al.
Silverbrook
Norrod et al.
Priem
Murphy
Choi et al.
Pannell
Pearce et al.
Watanabe et al.
Blixt
Baldwin
Cosman et al.
Akeley et al.
Morgan et al.
Deering
Krech, Jr.
Wide
May et al.
Wise et al.
Tarolli et al.
Rich et al.
Wang et al.
Baldwin
Wise et al.
Dye
Wilde et al.

5,850,229
5,856.829
5,859,645
5,861,888
5,861,893
5,867,166
5,870,097
5,870,098
5,870,102
5,870,109
5,870,587
5,872,902
5,874,969
5,877,741
5,877,770
5,877,771
5,880,736
5,880,737
5,883,638
5,886,701
5,886,705
5,887,155
5,890,190
5,892.517
5,892.974
5,894,300
5,900,881
5,903.283
5,909.218
5,909.225
5,912,675
5,912,676
5,914,721
5,914,725
5,914,729
5,917,496
5,920,326
5,920,876
5,923,332
5,923,334
5,926, 182
5,926,647
5,933,150
5,933,154
5,933,155
5.933529
5,936,641
5,936,683
5,940,086
5,940,089
5.940.538
5,943,058
5,943,060
5.945,997
5,949,421
5,949,423
5,949,424
5,949,428
5,949,440
5,956,042
5,956,043
5,958,020
5,959,640
5,963.220
5,966,134
5,969,726
5.977,979
5,977,984
5,982,376
5,982,390
5,986,659

12/1998
1/1999
1/1999
1/1999
1/1999
2/1999
2/1999
2/1999
2/1999
2/1999
2/1999
2/1999
2/1999
3/1999
3/1999
3/1999
3/1999
3/1999
3/1999
3/1999
3/1999
3/1999
3/1999
4/1999
4/1999
4/1999
5/1999
5/1999
6/1999
6/1999
6/1999
6/1999
6/1999
6/1999
6/1999
6/1999
7/1999
7/1999
7/1999
7/1999
7/1999
7/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
9/1999
9/1999
9/1999
9/1999
9/1999
9/1999
9/1999
9/1999
9/1999
10/1999
10/1999
10/1999
11/1999
11/1999
11/1999
11/1999
11/1999

Edelsbrunner et al.
Gray, III et al.
Latham
Dempsey
Sturgess
Myhrvold et al.
Snyder et al.
Gardiner
Tarolli et al.
McCormack et al.
Danforth et al.
Kuchkuda et al.
Storm et al.
Chee et al.
Hanaoka
Drebin et al.
Peercy et al.
Griffin et al.
Rouet et al.
Chauvin et al.
Lentz
Laidig
Rutman
Rich
Koizumi et al.
Takizawa
Ikedo
Selwan et al.
Naka et al.
Schinnerer et al.
Laperriere
Malladi et al.
Lim
MacInnis et al.
Lippincott
Fujita et al.
Rentschler et al.
Ungar et al.
Izawa
Luken
Menon et al.
Adams et al.
Ngo et al.
Howard et al.
Akeley
Kim
Jain et al.
Lin
Rentschler et al.
Dilliplane et al.
Spiegel et al.
Nagy
Cosman et al.
Zhao et al.
Ogletree et al.
Olsen
Cabral et al.
Toelle et al.
Krech, Jr. et al.
Tucker et al.
Jensen
Evoy et al.
Rudin et al.
Lee et al.
Arias
Rentschler et al.
Clough et al.
Omori
Abe et al.
Stoneking et al.
Gallery et al.

US 6,867,781 B1
Page 4

5,986,663
5,986.677
5.987,567
5.990,903
5,995,120
5,995,121
5.999,189
5.999,196
5.999,198
6,002.407
6,002.409
6,002,410
6,005,582
6,005,583
6,005,584
6,007,428
6,008,820
6,011,562
6,011,565
6,014,144
6,016,150
6,016,151
6,018,350
6,020,931
6,021,417
6,022,274
6,023.261
6,023.738
6,025,853
6,026,182
6,028,608
6,028,611
6,031,542
6,035,360
6,037,948
6,037,949
6,038.031
6,038,348
6,040,843
6,040,844
6,041,010
6,043.804
6,043,821
6,046,746
6,046,747
6,046,752
6,049,337
6,049,338
6,052,125
6,052,126
6,052,127
6,052,129
6,052,133
6,054,993
6,054,999
6,057,847
6,057,849
6,057.851
6,057.852
6,057,859
6,057,861
6,057,862
6,057,863
6,061.462
6,064,392
6,067,098
6,070,204
6,072,496
6,075,543
6,075,546
6,078,311

11/1999
11/1999
11/1999
11/1999
11/1999
11/1999
12/1999
12/1999
12/1999
12/1999
12/1999
12/1999
12/1999
12/1999
12/1999
12/1999
12/1999
1/2000
1/2000
1/2000
1/2000
1/2000
1/2000
2/2000
2/2000
2/2000
2/2000
2/2000
2/2000
2/2000
2/2000
2/2000
2/2000
3/2000
3/2000
3/2000
3/2000
3/2000
3/2000
3/2000
3/2000
3/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
5/2000
5/2000
5/2000
5/2000
5/2000
5/2000
5/2000
5/2000
5/2000
5/2000
6/2000
6/2000
6/2000
6/2000

Wide
Jones et al.
Rivard et al.
Donovan
Dye
Alcokrn et al.
Kajiya et al.
Storm et al.
Horan et al.
Fadden
Harkin
Battle
Gabriel et al.
Morrison
Kitamura et al.
Nishiumi et al.
Chauvin et al.
Gagne et al.
Kuo et al.
Nelson et al.
Lengyel et al.
Lin
Lee et al.
Bilbrey et al.
Massarksy
Takeda et al.
Ugajin
Priem et al.
Baldwin
Lee et al.
Jenkins
Anderson et al.
Wittig
Doidge et al.
Liepa
DeRose et al.
Murphy
Carley
Monroe et al.
Yamaguchi et al.
Puar et al.
Greene
Sprague et al.
Deering
Saunders et al.
Kirkland et al.
Van Overved
Anderson et al.
Gardiner et al.
Sakuraba et al.
Vaswani et al.
Fowler et al.
Kang
Devic et al.
Strandberg
Jenkins
Haubner et al.
Luken et al.
Krech, Jr.
Handelman et al.
Lee et al.
Margulis
Olarig
Tostevin et al.
Rohner
Dye
Poisner
Guenter et al.
Akeley
Hussain et al.
Pelkey

6,078.333
6,078,334
6,078.338
6,081,274
6,088,035
6,088,042
6,088.487
6,088,701
6,091,431
6,092,124
6,092,158
6,094,200
6,097.435
6,097.437
6,104,415
6,104,417
6,105,094
6,108,743
6,111,582
6,111,584
6,115,047
6,115,049
6,118,462
6,128,026
6,144,365
6,144,387
6,151,602
6,155,926
6,157,387
6,166,748
6,172,678
6,173,367
6,177.944
6,181,352
6,191,794
6,198.488
6,200.253
6,204.851
6.215,496
6.215,497
6,226,012
6,226,713
6,232,981
6,236,413
6,239,810
6.252,608
6.252,610
6,264,558
6,268,861
6,275,235
6,285,779
6,292,194
6,329.996
6,329.997
6,331,856
6,339,428
6,342,892
6,353,438
6,356,497
6,408,362
6,417,858
6,426,747
6,437,781
6,459.429
6,466.223
6,469,707
6,476,808
6,476,822
6,496,187

6/2000
6/2000
6/2000
6/2000
7/2000
7/2000
7/2000
7/2000
7/2000
7/2000
7/2000
7/2000
8/2000
8/2000

* 8/2000
8/2000
8/2000
8/2000
8/2000
8/2000
9/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
12/2000
12/2000
1/2001
1/2001
1/2001
1/2001
2/2001
3/2001
3/2001
3/2001
4/2001
4/2001
5/2001
5/2001
5/2001
5/2001
5/2001
6/2001

* 6/2001
7/2001
7/2001
8/2001
9/2001
9/2001

* 12/2001
12/2001
12/2001
1/2002
1/2002
3/2002
3/2002
6/2002
7/2002
7/2002
8/2002
10/2002
10/2002
10/2002

* 11/2002
11/2002
12/2002

Wittig et al.
Hanaoka et al.
Horan et al.
Shiraishi
Sudarsky et al.
Handelman et al.
Kurashige
Whaley et al.
Saxena et al.
Priem et al.
Harriman et al.
Olsen et al.
Stanger et al.
Hwang
Gossett 345/552
Nielsen et al.
Lindeman
Debs et al.
Jenkins
Murphy
Deering
Winner et al.
Margulis
Brothers, III
Young et al.
Liu et al.
Heilsberg et al.
Miyamoto et al.
Kotani
Van Hook et al.
Shiraishi
Aleksic et al.
Fowler et al.
Kirk et al.
Priem et al.
Lindholm et al.
Nishiumi et al.
Netschke et al.
Szeliski et al.
Leung
Priem et al.
Mehrotra
Gossett
Gossett et al.
Van Hook et al.
Snyder et al.
Hussain
Nishiumi et al.
Sanz-Pastor et al.
Morgan, III
Lapidous et al.
Powell, III
Bowen et al.
Wu et al.
Van Hook et al.
Fowler et al.
Van Hook et al.
Van Hook
Puar et al.
Arimilli et al.
Bosch et al.
Hoppe et al.
Tucker et al.
Deering
Dorbie et al.
Voorhies
Kuo et al.
Burbank
Deering et al.

- - - - - - - - - - - - - - 34.5/506

US 6,867,781 B1
Page 5

FOREIGN PATENT DOCUMENTS

EP 1 081 649 3/2001
JP 9-33O230 12/1997
JP 1105.358O 2/1999
JP 11076614 3/1999
JP 11161819 6/1999
JP 112O3SOO 7/1999
JP 11226257 8/1999
JP 11259671 9/1999
JP 11259678 9/1999
JP 2000-66985 3/2000
JP 2000-923.90 3/2000
JP 2OOO-132704 5/2000
JP 2OOO-1327O6 5/2000
JP 2000-149053 5/2000
JP 2000-156875 6/2000
JP 2000-182O77 6/2000
JP 2000-207582 7/2000
JP 2000-215325 8/2000
WO WO/93/04429 3/1993
WO WO 94/10641 5/1994

OTHER PUBLICATIONS

White paper, Spitzer, John, et al., “Using GL NV array
range and GL NV Fence on GEForce Products and
Beyond” (Aug. 1, 2000).
White paper, Rogers, Douglas H., “Optimizing Direct3D for
the GEForce 256” (Jan. 3, 2000).
Hook, Brian, “An Imcomplete Guide to Programming
DirectDraw and Direct 3D Immediate Mode (Release
0.46)," printed from web site: www.wkSoftware.com, 42
pageS.
Thompson, Tom, “Must-See 3-D Engines,” Byte Magazine,
printed from web site www.byte.com, 10 pages (Jun. 1996).
Thompson, Nigel, “Rendering with Immediate Mode,”
Microsoft Interactive Developer Column: Fun and Games,
printed from web site mSdn.microSoft.com, 8 pages (Mar.
1997).
“HOWTO: Animate Textures in Direct3D Immediate
Mode,” printed from web site Support.microsoft.com, 3
pages (last reviewed Dec. 15, 2000).
INFO: Rendering a Triangle Using an Execute Buffer,
printed from web site Support.microsoft.com, 6 pages (last
reviewed Oct. 20, 2000).
U.S. Appl. No. 09/337,293, filed Jun. 21, 1999, Multi-For
mat Vertex Data Processing Apparatus and Method issued
as U.S. patent No. 6,501,479 B1 on Dec. 31, 2002).
Datasheet, SGS-Thomson Microelectronics, nVIDIATM,
RIVA 128TM 128-Bit 3D Multimedia Accelerator (Oct.
1997).
Product Presentation, “RIVA128TM Leadership 3D Accel
eration, 2 pages.
ZDNET Reviews, from PC Magazine, “Other Enhance
ments, Jan. 15, 1999, wysivvyg://11/http://
www4.Zdnet.com...ies/reviews/0,41612188286.00.html.
ZDNet Reviews, from PC Magazine, “Screen Shot of
Alpha-channel Transparency,” Jan. 15, 1999, wysivvyg://16/
http://www4.Zdnet.com...ies/reviews/0.4161,
2188286.00.html.
Alpha (transparency) Effects, Future Technology Research
Index, http://www.future tech. Vuurwerk.nl/alpha.html.
Blythe, David, 5.6 Transparency Mapping and Trimming
with Alpha, http://toolbox.sgi.com/Taste0fDT/d...penGL/
advanced98/notes/node41.html, Jun. 11, 1998.

10.2 Alpha Blending, http://www.sgi.com/Software.opengl/
advanced98/notes/node 146.html.
10.3 Sorting, http://www.sgi.com/Software/opengl/ad
vanced 98/notes/node 147.html.
10.4. Using the Alpha Function, http://www.sgi.com/Soft
ware/opengl/advanced98/notes/node 148.html.
Winner, Stephanie, et al., “Hardware Accelerated Rendering
Of Antialiasing Using A Modified A-buffer Algorithm,”
Computer Graphics Proceedings, Annual Conference Series,
1997, pp. 307-316.
Debevec, Paul, et al., “Efficient View-Dependent Image
Based Rendering with Projective Texture-Mapping,” Uni
versity of California at Berkeley.
Gibson, Simon, et al., “Interactive Rendering with Real
World Illumination,” Rendering Techniques 2000; 11th
Eurographics Workshop on Rendering, pp. 365-376 (Jun.
2000).
Segal, Mark, et al., “Fast Shadows and Lighting Effects
Using Texture Mapping,” Computer Graphics, 26, 2, pp.
249-252 (Jul 1992).
White paper, Kilgard, Mark J., “Improving Shadows and
Reflections via the Stencil Buffer” (Nov. 3, 1999).
“OpenGL Projected Textures,” from web site:HTTP://reali
ty.sgi.com, 5 pages.
“5.13.1 How to Project a Texture,” from web site: www.s-
gi.com, 2 pages.
Arkin, Alan, email, Subject: “Texture distortion problem,”
from web site: HTTP://reality.sig.com (Jul. 1997).
Moller, Tomas et al., “Real-Time Rendering, pp. 179-183
(AK Peters Ltd., 1999).
Williams, Lance, “Casting Curved Shadows on Curved
Surfaces.” Computer Graphics (SIGGRAPH 78 Proceed
ings), vol. 12, No. 3, pp. 270-274 (Aug. 1978).
Woo et al., “A Survey of Shadow Algorithms," IEEE Com
puter Graphics and Applications, Vol. 10, No. 6, pp. 13–32
(Nov. 1990).
Heidrich et al., “ Applications of Pixel Textures in Visual
ization and Realistic Image Synthesis,” Proceedings 1999
Symposium On Interactive 3D Graphics, pp. 127-134 (Apr.
1999).
Hourcade et al., “Algorithms for Antiliased Cast Shadows”,
Computers and Graphics, vol. 9, No. 3, pp. 260–265 (1985).
Michael McCool, "Shadow Volume Reconstruction from
Depth Maps', ACM Transactions on Graphics, vol. 19, No.
1, Jan. 2000, pp. 1-26.
RenderMan Artist Tools, PhotoRealistic RenderMan 3.8
User's Manual, Pixar (Aug. 1998).
RenderMan Interface Version 3.2 (Jul. 2000).
White Paper, Dietrich, Sim, “Cartoon Rendering and
Advanced Texture Features of the GeForce 256 Texture
Matrix, Projective Textures, Cube Maps, Texture Coordinate
Generation and DOTPRODUCT3 Texture Blending” (Dec.
16, 1999).
Peter J. Kovach, Inside Direct 3D, “Alpha Testing,” ppp
289-291 (1999).
Web site information, Cartoon Reyes, REM Infografica,
http://www.digimotion.co.uk/cartoonreyes.htm.
Raskar, Ramesh et al., “Image Precision Silhouette Edges.”
Symposium on Interactive 3D Graphics 1999, Atlanta, 7
pages (Apr. 26-29, 1999).

US 6,867,781 B1
Page 6

Schlechtwegim Stefan et al., Rendering Line-Drawings with
Limited Resources, Proceedings of GRAPHICON 96, 6th
International Conference and Exhibition on Computer
Graphics and Visualization in Russia, (St. Petersburg, Jul.
1–5, 1996) vol. 2, pp 131–137.
Haeberli, Paul et al., “Texture Mapping as a Fundamental
Drawing Primitive,” Proceedings of the Fourth Eurograph
ics Workshop on Rendering, 11 pages, Paris, France (Jun.
1993).
Schlechtweg, Stefan et al., “Empphasising in Line-draw
ings,” Norsk Samarbeid innen grafisk databehandling: NOR
SIGD Info, medlemsblad for NORSIGD, Nr 1/95, pp. 9-10.
Markosian, Lee et al., “Real-Time Nonphotorealistic Ren
dering.” Brown University site of the NSF Science and
Technology Center for Computer Graphics and Scientific
Visualization, Providence, RI, 5 pages (undated).
Feth, Bill, “Non-Photorealistic Rendering.”
wif3(acornell.edu, CS490-Bruce Land, 5 pages (Spring
1998).
Elber, Gershon, “Line Art Illustrations of Parametric and
Implicit Forms,” IEEE Transactions on Visualization and
Computer Graphics, vol. 4, No. 1, Jan.-Mar. 1998.
Zeleznik, Robert et al. “SKETCH: An Interface for Sketch
ing 3D Scenes,' Computer Graphics Proceedings, Annual
Conference Series 1996, pp. 163–170.
Computer Graphics World, Dec. 1997.
Reynolds, Craig, "Stylized Depiction in Computer Graphics,
Non-Photorealistic, Painterly and Toon Rendering,” an
annotated Survey of online resources, 13 pages, last update
May 30, 2000, http://www.red.com/cwr/painterly.html.
Render Man Artist Tools, Using Arbitrary Output Variables
in Photorealistic Renderman (With Applications), PhotoRe
alistic Renderman Application Note #24, 8 pages, Jun. 1998,
http://www.pixar.com/products/renderman/toolkit/Toolkit/
AppNoteS/appnote.24.html.
Decaudin, Philippe, “Cartoon-Looking Rendering of 3D
Scenes, Syntim Project Inria, 6 pages, http://www-Syntim.
inria.fr/syntim/recherche/decaudin/cartoon-eng.html.
Hachigan, Jennifer, “Super Cel Shader 1.00 Tips and
Tricks,' 2 pages, WySiwyg://thepage. 13/http://member
S.Xoom.com/ XMCM..jarvia/3D/celshade.html.
Digimation Inc., “The Incredible Comicshop,” info sheet, 2
pages, http://www.digimation.com/asp/product/asp?prod
uct id=33.
Softimage/3D Full Support, “Toon Assistant,” 1998 Avid
Technology, Inc., 1 page, http://www.Softimage.com/3dsup
port/techn...uments/3.8/features3.8/rel notes.56.html.
Cambridge Animo-Scene III, info sheet, Cambridge Ani
mation Systems, 2 pages, http://www.cam-ani.co.uk/
casweb/products/software/Scenell.htm.
Mulligan, Vikram, Toon, info sheet, 2 pages, http://digital
carversguild.com/productS/toon/toon..thml.
Toony Shaders, "Dang I'm tired of photorealism,” 4 pages,
http://www.visi.com/-mcdonald/toony.html.
“Cartoon Shading, Using Shading Mapping, 1 page, http://
www.goat.com/alias/shaders.html#toonshad.
Web site information, Cartoon Reyes, http://www.zentertain
ment.com/Zentropy/review/cartoonreyes.html.
VIDI Presenter 3D Repository, “Shaders.' 2 pages, http://
www.webnation.com/vidirep/panels/renderman/shaderS/
toon.phtml.
The RenderMan Interface Version 3.1, (Sep. 1989).
“Renderman Artist Tools, PhotoRealistic RenderMan Tuto
rial.” Pixar (Jan. 1996).

Web site materials, “Renderman Artist Tools, PhotoRealistic
RenderMan 3.8 User's Manual,” Pixar.
NVIDIA.com, technical presentation, “AGDC Per-Pixel
Shading” (Nov. 15, 2000).
NVIDIA.com, technical presentation, Introduction to DX8
Pixel Shaders (Nov. 10, 2000).
NVIDIA.com, technical presentation, “Advanced Pixel
Shader Details” (Nov. 10, 2000).
“Developer's Lair, Multitexturing with the ATI Rage Pro,”
(7 pages) from ati.com web site (2000).
Slide Presentation, Sébastien Dominé, “nVIDIA Mesh Skin
ning, OpenGI’.
Singh, Karan et al., "Skinning Characters using Surface
Oriented Free-Form Deformations,” Toronto Canada.
“Hardware Technology,” from ATI.com web site, 8 pages
(2000).
“Skeletal Animation and Skinning,” from ATI.com web site,
2 pages (Summer 2000).
“Developer Relations, ATI Summer 2000 Developer News
letter,” from ATI.com web site, 5 pages (Summer 2000).
Press Releases, “ATI's RADEON family of products deliv
ers the most comprehensive Support for the advance graph
ics features of DirectX 8.0.” Canada, from ATI.com web
site, 2 pages (Nov. 9, 2000).
“ATI RADEON Skinning and Tweening,” from ATI.com
web site, 1 page (2000).
Hart, Evan et al., “Vertex Shading with Direct3D and
OpenGL, Game Developers Conference 2001, from ATI.
com web site (2001).
Search Results for: skinning, from ATI.com web site, 5
pages (May 24, 2001).
Hart, Evan et al., “Graphics by rage,” Game Developers
Conference 2000, from ATI.com web site (2000).
Efficient Command/Data Interface Protocol For Graphics,
IBM TDB, vol. 36, issue 9A, Sep. 1, 1993, pp. 307-312.
Shade, Jonathan et al., "Layered Depth Images,' Computer
Graphics Proceedings, Annnual Conference Series, pp.
231-242 (1998).
Videum Conference Pro (PCI) Specification, product of
Winnov (Winnov), published Jul. 21, 1999.
Hoppe, Hugues, “Optimization of Mesh Locality for Trans
parent Vertex Caching.” Proceedings of SIGGRAPH, pp.
269-276 (Aug. 8-13, 1999).
Whitepaper: Implementing Fog in Direct3D, Jan. 3, 2000,
www.nvidia.com.
Akeley, Kurt, “Reality Engine Graphics”, 1993, Silicon
Graphics Computer Systems, pp. 109-116.
Photograph of Sony PlayStation II System.
Photograph of Sega Dreamcast System.
Photograph of Nintendo 64 System.
Whitepaper: 3D Graphics Demystified, Nov. 11, 1999,
www.nvidia.com.
Whitepaper: “Z Buffering, Interpolation and More
W-Buffering”, Doug Rogers, Jan. 31, 2000, www.nvidi
CO.

Whitepaper: Using GL NV vertex array and GL NV
fence, posted Aug. 1, 2000, www.nvidia.com.
Whitepaper: Anistropic Texture Filtering in OpenGL. posted
Jul. 17, 2000, www.nvidia.com.
Whitepaper: Mapping Texels to Pixels in D3D, posted Apr.
5, 2000, www.nvidia.com.
Whitepaper: Guard Band Clipping, posted Jan. 31, 2000,
www.nvidia.com.

US 6,867,781 B1
Page 7

Whitepaper: Cube Environment Mapping, posted Jan. 14,
2000, www.nvidia.com.
Whitepaper: Color Key in D3D, posted Jan. 11, 2000,
www.nvidia.com.
Whitepaper: Vertex Blending Under DX7 for the GeForce
256, Jan. 5, 2000, www.nvidia.com.
Whitepaper: Optimizing Direct3D for the GeForce 256, Jan.
3, 2000, www.nvidia.com.
Whitepaper: Dot Product Texture Blending, Dec. 3, 1999,
www.nvidia.com.
Whitepaper: Technical Brief: AGP 4X with Fast Writes,
Nov. 10, 1999, www.nvidia.com.
Technical Brief: Transform and Lighting, Nov. 10, 1999,
www.nvidia.com.
Technical Brief: What's New With Microsoft DirectX7,
posted Nov. 10, 1999, www.nvidia.com.
Mitchell et al., “Multitexturing in DirectX6', Game Devel
oper, Sep. 1998, www.gdmag.com.
Vision Tek, “GeForce2 GS Graphics Processing Unit', C.
2000 www.visiontek.com.
Jim Bushnell et al. “Advanced Multitexture Effects. With
Direct 3D and OpenGL", Pyramid Peak Design & ATI
Research, Inc., GameDevelopers Conference, (C) 1999.
Sony PlayStation II Instruction Manual, Sony Computer
Entertainment Inc., (C) 2000.
Stand and Be Judged, Next Generation, May 2000.
PlayStation II: Hardware Heaven or Hell?, Next Generation,
Jan. 2000.
Chris Charla, “PlayStation II: The Latest News”, Next
Generation, Sep. 1999.
“First PlayStation II Gameplay Screens Revealed’, Next
Generation, Sep. 1999.
Game Enthusiast Online Highlights, Mar. 18, 1999.
Game Enthusiast Online Highlights, Mar. 19, 1999.
Game Enthusiast Online Highlights, Mar. 17, 1999.
Game Enthusiast Online Highlights, Oct. 20, 1999.
Joel Easley, “PlayStation II Revealed', Game Week, Sep. 29,
1999.
Inside Sony's Next Generation PlayStation, (C) 1999.
Press Releases, Mar. 18, 1999.
Chris Johnston, “PlayStation Part Deux”, Press Start, (C)
1999.
Nikkei Shimbun, “Sony Making SME, Chemical and SPT
into Wholly-Owned Subsidiaries”, Mar. 9, 1999.
AM News: Japanese Developers Not All Sold on PS2, Next
Generation, Mar. 16, 1999.
Sony To Turn PlayStation Maker into Wholly Owned Unit
Nikkei, Dow Jones News Service, Mar. 8, 1999.
Yumiko Ono, Sony Antes Up Its Chips. In Bet On New Game
System, Dow Jones News Service, Mar. 4, 1999.
MacWeek.Com Gets Inside Story on Connectix VGS for
Windows; Controversial Emulator of Sony PlayStation
Games Cureently Available for Macs Only, Business Wire,
Mar. 12, 1999.
“DexDrive Bridges Gap', The Tampa Tribune, Mar. 12,
1999.
A Microprocessor With a 128b CPU, 10 Floating-Point
MAC's, 4 Floating-Point Dividers, and an MPEG2
Decoder, 1999 IEEE International Solid-State Circuits Con
ference, Feb. 16, 1999.
Dreamcast Instruction Manuel, Sega Enterprises, Ltd., C)
1998.

“Sega To Launch Video Camera for Dreamcast”, Reuters
Business News, Feb. 16, 2000.

David Pescovitz, “Dream On", Wired, Aug. 1999.
Randy Nelson, “Dreamcast 101: Everything You Ever
Wanted To Know About Sega's Powerful New Console”,
Official Sega Dreamcast Magazine, Jun. 1999.
2D/3D Graphics Card User Manual, Guillemot (C) 1999.
Nintendo 64 Instruction Booklet, Nintendo of America,
1998.
Steven Levy, “Here Comes PlayStation II”, Newsweek, Mar.
6, 2000.
David Sheff, “Sony Smackage:Test Driving The PlayStation
II, Wired, Nov. 1999.
Introducing The Next Generation PlayStation, Sony Com
puter Entertainment Inc., (C) 1999.
Leadtek GTS, Aug. 3, 2000, www.hexus.net.
Voodoo 55500 Review, Jul. 26, 2000, www.hexus.net.
ATI Radeon 64 Meg DDR OEM, Aug., 19, 2000, www.hex
uS.net.

Microsoft Xbox The Future of Gaming, Microsoft Xbox
Performance Sheet, www.Xbox.com.
Robert L. Cook, “Shade Trees”, Computer Graphics, vol. 18,
No. 3, Jul. 1984.
Wang et al., “Second-Depth Shadow Mapping”, Depart
ment of Computer Science, Univ. N.C. Chapel Hill, N.C. pp.
1–7.
Peercy et al., “Efficient Bump Mapping Hardware', Com
puter Graphics Proceedings, Annual Conference Series,
1997.
Gustavo Oliveira, "Refractive Texture Mappig, Part One',
www.gamasutra.com, Nov. 10, 2000.
John Schlag, Fast Embossing Effects on Raster Image Data,
Graphics Gems IV, Edited by Paul S. Heckbert, Computer
Science Department, Carnegie Mellon University, Academic
Press, Inc., 1994,pp. 433–437.
James F. Blinn, “Simulationof Wrinkled Surfaces.” Caltech/
JPL, pp. 286–292, SIGGRAPH 78 (1978).
Tomas Möller and Eric Haines “Real-Time Rendering”, AK
Peters Ltd., (C) 1999, pp. 127-142.
Technical Presentation: Vertex Buffers, posted Jun. 12,
2000, www.nvidia.com.
Technical Presentation: Hardware Transform and Lighting,
www.nvidia.com, posted Jun. 12, 2000.
Technical Presentation: Hardware Bump-mapping Choices
and Concepts, Jun. 7, 2000, www.nvidia.com.
Technical Presentation: How to Bump Map a Skinned
Polygonal Model, Jun. 7, 2000, nVidia.com.
Technical Presentation: Computations for Hardware Light
ing and Shading, Mar. 17, 2000, www.nvidia.com.
Technical Presentation: Practical Bump-mapping for
Today’s GPUs, Mar. 17, 2000 www.nvidia.com.
Technical Presentation: Shadows, Transparency, & Fog,
Mar. 17, 2000 www.nvidia.com.
Technical Presentation: GeForce 256 Register Combiners,
Mar. 17, 2000, www.nvidia.com.
Technical Presentation: TexGen & The Texture Matrix, Mar.
15, 2000 www.nvidia.com.
Technical Presentation: Toon Shading, Mar. 15, 2000,
www.nvidia.com.
Technical Presentation: D3D 7 Vertex Lighting, Mar. 15,
2000, www.nvidia.com.
Technical Presentation: Per-Pixel Lighting (by S. Dietrich)
Mar. 14, 2000 www.nvidia.com.
Technical Presentation: GeForce 256 and RIVA TNT Com
biners, Dec. 8, 1999, www.nvidia.com.

US 6,867,781 B1
Page 8

Technical Presentation: Vertex Cache Optimization, Nov.
12, 1999, www.nvidia.com.
Technical Presentation: Vertex Blending, Nov. 12, 1999,
www.nvidia.com.
Technical Presentation: Hardware Transform and Lighting,
Nov. 12, 1999, www.nvidia.com.
Technical Presentation: GeForce 256. Overview, Nov. 12,
1999, www.nvidia.com.
Technical Presentation: DirectX 7 and Texture Management,
Nov. 12, 1999 www.nvidia.com.
Technical Presentation: DotProduct Lighting, Nov. 12, 1999,
www.nvidia.com.
Technical Presentation: Texture Coordinate Generation,
Nov. 3, 1999, www.nvidia.com.
Technical Presentation: Phong Shading and Lightmaps, Nov.
3, 1999, www.nvidia.com.
Technical Presentation: The ARB multitexture Extension,
Nov. 3, 1999 www.nvidia.com.
Technical Presentation: Multitexture Combiners, Nov. 3,
1999, www.nvidia.com.
Technical Presentation: Emboss Bump Mapping, Nov. 3,
1999, www.nvidia.com.
Technical Presentation: Hardware Accelerated Anistropic
Lighting, Nov. 3, 1999 www.nvidia.com.
Technical Presentation: Guard Band Clipping, Nov. 3, 1999,
www.nvidia.com.
The RenderMan Interface, Stephan R. Keith, Version 3.1,
Pixar Animation Studios, Sep. 1989.
The RenderMan Interface, Version 3.2, Pixar Animation
Studios, Jul. 2000, www.pixar.com.

NVIDIA Product Overview, “GeForce2Ultra”, NVIDIA
Corporation, Aug. 21, 2000, www.nvidia.com.
Duke, “Dreamcast Technical Specs”, Sega Dreamcast
Review, Sega, 2/99, www.game-revolution.com.
Marlin Rowley, “GeForce 1 & 2 GPU Speed Tests”, May 11,
2000, www.g256.com.
“Dreamcast: The Full Story”, Next Generation, Sep. 1998.
DirectX 7.0 Programmer's Reference, Microsoft Corpora
tion, 1995–1999 (as part of the DirectX 7.0 SDK on the
Companion CD included with “Inside Direct3D", Microsoft
Programming Series, Peter J. Kovach, Microsoft Press,
1999).
“Inside Direct3D", Microsoft Programming Series, Peter J.
Kovach, Microsoft Press, 1999.
“OpenGL Programming Guide, The Official Guide to Learn
ing OpenGL, Release 1’, Jackie Nieder, Tom David, Mason
Woo, Addison-Wesley Publishing Co., 1993.
“Procedural Elements for Computer Graphics,” Second Edi
tion, David F. Rogers, McGraw Hill, 1998.
“Real-Time Rendering,” Tomas Molleir, Eric Haines, AK
Peters, 1999.
“Computer Graphics, Principles and Practice,” Second Edi
tion, The Systems Programming Series, Foley, Van Dam,
Fiener, Hughes, Addison Wesley, 1990.
“Principles of Three-Dimensional Computer Animation”,
Revised Edition, Michael O'Rourke, W.W. Norton & Com
pany, 1998.

* cited by examiner

US 6,867,781 B1 Sheet 1 of 8 Mar. 15, 2005 U.S. Patent

D_||||||||||||||||||N||||||||||||)(D
99

US 6,867,781 B1 Sheet 2 of 8 Mar. 15, 2005 U.S. Patent

09

US 6,867,781 B1 Sheet 3 of 8 Mar. 15, 2005 U.S. Patent

U.S. Patent Mar. 15, 2005 Sheet 5 of 8 US 6,867,781 B1

112
114

20 200a position -300a position' ition

210 COmmand t Li to ears. Processing
EN DisplayLists Cal
CPU 212
110 mas

position, normal tex"
Vertex teX COOrds Texture COOrds'
Cache COOrdinate

300C Generation

Vertex Arrays
214

Clipping 400b 700a."
Culling

113 External Frame Setup
Buffer Or 3000
Texture

504 Texture 302 700C

Cache

500b 500a

Bump Texture
Environment

600a Indirect
Texture

Fig. 5 EXAMPLE GRAPHICS PROCESSOR FLOW

U.S. Patent Mar. 15, 2005 Sheet 6 of 8 US 6,867,781 B1

insert GFX
COmmands
into pipeline

Generate Unique
data meSSage

Insert unique 804
data meSSage into
pipeline as token
(SetDrawSync)

800

802

806

PE
Interrupt
int?

808
Read PE

Token Register
(GetDraWSync)

810
Same as

generated data
mSg

Example Graphics Pipeline
Synchronization Perform Task requiring Routine Using Token Synchronization

with pipeline Fig. 6

US 6,867,781 B1
1

GRAPHICS PIPELINE TOKEN
SYNCHRONIZATION

This application claims the benefit of U.S. Provisional
Application No. 60/226,889, filed Aug. 23, 2000, the entire
content of which is hereby incorporated by reference in this
application.

FIELD OF THE INVENTION

The present invention relates to computer graphics, and
more particularly to interactive graphics Systems. Such as
home Video game platforms. Still more particularly this
invention relates to Synchronization between a graphics
pipeline and a graphics command producer using variable
content Synchronization tokens.

BACKGROUND AND SUMMARY OF THE
INVENTION

Many of us have seen films containing remarkably real
istic dinosaurs, aliens, animated toys and other fanciful
creatures. Such animations are made possible by computer
graphics. Using Such techniques, a computer graphics artist
can Specify how each object should look and how it should
change in appearance over time, and a computer then models
the objects and displays them on a display Such as your
television or a computer Screen. The computer takes care of
performing the many tasks required to make Sure that each
part of the displayed image is colored and shaped just right
based on the position and orientation of each object in a
Scene, the direction in which light Seems to Strike each
object, the Surface texture of each object, and other factors.

Because computer graphics generation is complex,
computer-generated three-dimensional graphics just a few
years ago were mostly limited to expensive specialized flight
Simulators, high-end graphics WorkStations and Supercom
puters. The public Saw Some of the images generated by
these computer Systems in movies and expensive television
advertisements, but most of us couldn't actually interact
with the computers doing the graphics generation. All this
has changed with the availability of relatively inexpensive
3D graphics platforms Such as, for example, the Nintendo
64(R) and various 3D graphics cards now available for
personal computers. It is now possible to interact with
exciting 3D animations and Simulations on relatively inex
pensive computer graphics Systems in your home or office.
A problem graphics System designers confronted in the

past was how to Synchronize the graphics pipeline with
external components Such as the graphics command pro
ducer. A typical graphics rendering System consists of Sev
eral asynchronous components (e.g., graphics command
producer that generates graphics commands; the graphics
processor consuming the commands and producing frame
buffer outputs, and a display interface that displays the frame
buffers). It is often desirable to synchronize these different
Stages of the rendering System to establish time-coherence
between various operations. For example, it would be very
useful for the graphics command producer to know under
certain circumstances when the graphics processor has fin
ished processing a given graphics command. The Synchro
nization problem is complicated in that a typical graphics
processor may take different amounts of time to proceSS
different graphics commands.

Various solutions to this problem were offered. For
example, one technique that has been used in the past to
provide Synchronization between a graphics pipeline and a
graphics command producer is to have the graphics pipeline

15

25

35

40

45

50

55

60

65

2
Send an interrupt to the command producer when all of the
commands in a graphics display list have been processed.
While this synchronization capability is very useful, it does
not Solve more intermediate Synchronization requirements
within a graphics display list (e.g., to enable the graphics
command producer or other actor to perform Some task other
than Sending new graphics commands while the graphics
pipeline continues to work on the remainder of a display
list).

It is known to insert variable content token identifiers into
a graphics command Stream to allow a graphics processor to
pick between different items for processing. However, Such
token identifiers were not generally for Synchronization
purposes but were used instead to allow the graphics pipe
line to identify data Structures or other items it was to
operate upon.
While significant work has been done in the past, further

improvements are desirable.
The present invention Solves the Synchronization problem

by providing techniques and arrangements that Synchronize
a graphics pipeline with an external actor Such as, for
example, a graphics command producer. In accordance with
one aspect provided by this invention, a token including a
variable data message is inserted into a graphics command
Stream Sent to a graphics pipeline. At a predetermined point
in the pipeline, the token is captured and a signal is gener
ated indicating a token has arrived. An external device can
look at the captured token to determine which of multiple
possible tokens has been captured.

In one particular example, the graphics pipeline generates
an interrupt when a token arrives at a predetermined point in
the pipeline, and the other actor can poll a token register to
determine the value of the captured token. The graphics
command producer or other actor can use the token Syn
chronization information to Synchronize a task with the
graphics pipeline, e.g., to maintain memory coherence in
memory shared between the graphics pipeline and the graph
ics command producer. In accordance with another aspect of
the invention, the graphics command producer can insert
multiple tokens of different values in the same graphics
command Stream, and use a comparison to determine which
token has arrived at the predetermined point in the graphics
pipeline. Different tasks can be triggered based on which
token has arrived at that point.

In accordance with one aspect provided by the invention,
a method of Synchronizing with a graphics pipeline com
prises Sending a variable content Synchronization token
down the graphics pipeline, and detecting when the token
has reached a predetermined point in the pipeline. The token
may comprise a variable content data message which, in one
embodiment, the graphics pipeline does not modify. The
detecting Step may comprise comparing a value returned by
a token register with a value of the Sent token. The detecting
Step may include polling a token register in response to an
interrupt.

In accordance with another aspect provided by this
invention, a method of Synchronizing with a graphics pipe
line of the type including a command processor, a transfor
mation unit, a lighting unit, a texture coordinate generator,
a texture mapper, a rasterizer, a blender, a pixel engine and
a frame buffer includes inserting a variable content data
message into the graphics pipeline, capturing the variable
content data message at a predetermined position within the
pipeline, Signaling when the variable content data message
has reached the predetermined within the pipeline; and
determining whether the captured variable content data

US 6,867,781 B1
3

message corresponds to the inserted variable content data
message. A signaling Step may comprise generating an
interrupt when the variable content data message reaches the
bottom of the pipeline. The capturing Step may comprise
Storing the variable content data message in a register, and
the determining Step may comprise reading the contents of
that register.

In accordance with Still another aspect provided by this
invention, a command processor receives a variable content
data message and passes the variable content data message
through a pipeline to a pixel engine. The pixel engine
includes a register that captures the variable content data
message and Signals when the variable content data message
has reached the pixel engine.
A Still additional aspect provided by this invention pro

vides a token comprising a variable content data message
being inserted into a stream of graphics commands. A
graphics System provides a response to an inquiry as to
whether the portions of the graphics Stream before the token
have been processed to allow Synchronization of graphics
System events.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
invention will be better and more completely understood by
referring to the following detailed description of presently
preferred embodiments in conjunction with the drawings, of
which:

FIG. 1 is an overall view of an example interactive
computer graphics System;

FIG. 2 is a block diagram of the FIG. 1 example computer
graphics System;

FIG. 3 is a block diagram of the example graphics and
audio processor shown in FIG. 2;

FIG. 4 is a block diagram of the example 3D graphics
processor shown in FIG. 3;

FIG. 5 is an example logical flow diagram of the FIG. 4
graphics and audio processor;

FIG. 6 is flowchart of example graphics pipeline Synchro
nization using a Synchronization token; and

FIGS. 7A and 7B show example alternative compatible
implementations.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS OF THE INVENTION

FIG. 1 shows an example interactive 3D computer graph
ics system 50. System 50 can be used to play interactive 3D
Video games with interesting Stereo Sound. It can also be
used for a variety of other applications.

In this example, System 50 is capable of processing,
interactively in real time, a digital representation or model of
a three-dimensional world. System 50 can display some or
all of the world from any arbitrary viewpoint. For example,
System 50 can interactively change the Viewpoint in
response to real time inputs from handheld controllers 59a,
52b or other input devices. This allows the game player to
See the World through the eyes of Someone within or outside
of the world. System 50 can be used for applications that do
not require real time 3D interactive display (e.g., 2D display
generation and/or non-interactive display), but the capability
of displaying quality 3D imageS very quickly can be used to
create very realistic and exciting game play or other graphi
cal interactions.
To play a Video game or other application using System

50, the user first connects a main unit 54 to his or her color

15

25

35

40

45

50

55

60

65

4
television Set 56 or other display device by connecting a
cable 58 between the two. Main unit 54 produces both video
Signals and audio signals for controlling color television Set
56. The Video Signals are what controls the images displayed
on the television Screen 59, and the audio Signals are played
back as Sound through television Stereo loudspeakers 61L,
61R.

The user also needs to connect main unit 54 to a power
Source. This power Source may be a conventional AC
adapter (not shown) that plugs into a standard home elec
trical wall Socket and converts the house current into a lower
DC voltage Signal Suitable for powering the main unit 54.
Batteries could be used in other implementations.
The user may use hand controllers 52a, 52b to control

main unit 54. Controls 60 can be used, for example, to
Specify the direction (up or down, left or right, closer or
further away) that a character displayed on television 56
should move within a 3D world. Controls 60 also provide
input for other applications (e.g., menu Selection, pointer/
cursor control, etc.). Controllers 52 can take a variety of
forms. In this example, controllers 52 shown each include
controls 60 Such as joysticks, pushbuttons and/or directional
Switches. Controllers 52 may be connected to main unit 54
by cables or wirelessly via electromagnetic (e.g., radio or
infrared) waves.
To play an application Such as a game, the user Selects an

appropriate Storage medium 62 Storing the Video game or
other application he or she wants to play, and inserts that
Storage medium into a slot 64 in main unit 54. Storage
medium 62 may, for example, be a specially encoded and/or
encrypted optical and/or magnetic disk. The user may oper
ate a power Switch 66 to turn on main unit 54 and cause the
main unit to begin running the Video game or other appli
cation based on the Software Stored in the Storage medium
62. The user may operate controllers 52 to provide inputs to
main unit 54. For example, operating a control 60 may cause
the game or other application to Start. Moving other controls
60 can cause animated characters to move in different
directions or change the user's point of view in a 3D world.
Depending upon the particular Software Stored within the
storage medium 62, the various controls 60 on the controller
52 can perform different functions at different times.
Example Electronics of Overall System

FIG. 2 shows a block diagram of example components of
system 50. The primary components include:

a main processor (CPU) 110,
a main memory 112, and
a graphics and audio processor 114.
In this example, main processor 110 (e.g., an enhanced

IBM PowerPC 750) receives inputs from handheld control
lers 108 (and/or other input devices) via graphics and audio
processor 114. Main processor 110 interactively responds to
user inputs, and executes a video game or other program
Supplied, for example, by external Storage media 62 via a
mass Storage acceSS device 106 Such as an optical disk drive.
AS one example, in the context of Video game play, main
processor 110 can perform collision detection and animation
processing in addition to a variety of interactive and control
functions.

In this example, main processor 110 generates 3D graph
ics and audio commands and sends them to graphics and
audio processor 114. The graphics and audio processor 114
processes these commands to generate interesting visual
images on display 59 and interesting Stereo Sound on Stereo
loudspeakers 61R, 61L or other Suitable Sound-generating
devices.

US 6,867,781 B1
S

Example system 50 includes a video encoder 120 that
receives image Signals from graphics and audio processor
114 and converts the image Signals into analog and/or digital
Video signals Suitable for display on a Standard display
device Such as a computer monitor or home color television
set 56. System 50 also includes an audio codec (compressor/
decompressor) 122 that compresses and decompresses digi
tized audio signals and may also convert between digital and
analog audio signaling formats as needed. Audio codec 122
can receive audio inputs via a buffer 124 and provide them
to graphics and audio processor 114 for processing (e.g.,
mixing with other audio signals the processor generates
and/or receives via a streaming audio output of mass Storage
access device 106). Graphics and audio processor 114 in this
example can Store audio related information in an audio
memory 126 that is available for audio tasks. Graphics and
audio processor 114 provides the resulting audio output
Signals to audio codec 122 for decompression and conver
Sion to analog signals (e.g., via buffer amplifiers 128L,
128R) so they can be reproduced by loudspeakers 61L, 61R.

Graphics and audio processor 114 has the ability to
communicate with various additional devices that may be
present within system 50. For example, a parallel digital bus
130 may be used to communicate with mass Storage acceSS
device 106 and/or other components. A serial peripheral bus
132 may communicate with a variety of peripheral or other
devices including, for example:

a programmable read-only memory and/or real time clock
134,

a modem 136 or other networking interface (which may
in turn connect System 50 to a telecommunications
network 138 such as the Internet or other digital
network from/to which program instructions and/or
data can be downloaded or uploaded), and

flash memory 140.
A further external serial bus 142 may be used to communi
cate with additional expansion memory 144 (e.g., a memory
card) or other devices. Connectors may be used to connect
various devices to busses 130, 132, 142.
Example Graphics And Audio Processor

FIG. 3 is a block diagram of an example graphics and
audio processor 114. Graphics and audio processor 114 in
one example may be a single-chip ASIC (application spe
cific integrated circuit). In this example, graphics and audio
processor 114 includes:

a processor interface 150,
a memory interface/controller 152,
a 3D graphics processor 154,
an audio digital signal processor (DSP) 156,
an audio memory interface 158,
an audio interface and mixer 160,
a peripheral controller 162, and
a display controller 164.
3D graphics processor 154 performs graphics processing

tasks. Audio digital Signal processor 156 performs audio
processing taskS. Display controller 164 accesses image
information from main memory 112 and provides it to video
encoder 120 for display on display device 56. Audio inter
face and mixer 160 interfaces with audio codec 122, and can
also mix audio from different Sources (e.g., streaming audio
from mass Storage access device 106, the output of audio
DSP 156, and external audio input received via audio codec
122). Processor interface 150 provides a data and control
interface between main processor 110 and graphics and
audio processor 114.

5

15

25

35

40

45

50

55

60

65

6
Memory interface 152 provides a data and control inter

face between graphics and audio processor 114 and memory
112. In this example, main processor 110 accesses main
memory 112 via processor interface 150 and memory inter
face 152 that are part of graphics and audio processor 114.
Peripheral controller 162 provides a data and control inter
face between graphics and audio processor 114 and the
various peripherals mentioned above. Audio memory inter
face 158 provides an interface with audio memory 126.
Example Graphics Pipeline

FIG. 4 shows a more detailed view of an example 3D
graphics processor 154. 3D graphics processor 154 includes,
among other things, a command processor 200 and a 3D
graphics pipeline 180. Main processor 110 communicates
Streams of data (e.g., graphics command streams and display
lists) to command processor 200. Main processor 110 has a
two-level cache 115 to minimize memory latency, and also
has a write-gathering buffer 111 for uncached data Streams
targeted for the graphics and audio processor 114. The
write-gathering buffer 111 collects partial cache lines into
full cache lines and sends the data out to the graphics and
audio processor 114 one cache line at a time for maximum
buS usage.
Command processor 200 receives display commands

from main processor 110 and parses them-obtaining any
additional data necessary to process them from shared
memory 112. The command processor 200 provides a stream
of vertex commands to graphics pipeline 180 for 2D and/or
3D processing and rendering. Graphics pipeline 180 gener
ates images based on these commands. The resulting image
information may be transferred to main memory 112 for
access by display controller/video interface unit 164
which displays the frame buffer output of pipeline 180 on
display 56.

FIG. 5 is a logical flow diagram of graphics processor
154. Main processor 110 may store graphics command
streams 210, display lists 212 and vertex arrays 214 in main
memory 112, and pass pointers to command processor 200
via bus interface 150. The main processor 110 stores graph
ics commands in one or more graphics first-in-first-out
(FIFO) buffers 210 it allocates in main memory 10. The
command processor 200 fetches:
command Streams from main memory 112 via an on-chip
FIFO memory buffer 216 that receives and buffers the
graphics commands for Synchronization/flow control
and load balancing,

display lists 212 from main memory 112 via an on-chip
call FIFO memory buffer 218, and

vertex attributes from the command Stream and/or from
vertex arrays 214 in main memory 112 via a vertex
cache 220.

Command processor 200 performs command processing
operations 200a that convert attribute types to floating point
format, and pass the resulting complete vertex polygon data
to graphics pipeline 180 for rendering/rasterization. A pro
grammable memory arbitration circuitry 130 (see FIG. 4)
arbitrates access to shared main memory 112 between graph
ics pipeline 180, command processor 200 and display
controller/video interface unit 164.

FIG. 4 shows that graphics pipeline 180 may include:
a transform unit 300,
a setup/rasterizer 400,
a texture unit 500,
a texture environment unit 600, and
a pixel engine 700.
Transform unit 300 performs a variety of 2D and 3D

transform and other operations 300a (see FIG. 5). Transform

US 6,867,781 B1
7

unit 300 may include one or more matrix memories 300b for
Storing matrices used in transformation processing 300a.
Transform unit 300 transforms incoming geometry per ver
teX from object space to Screen Space; and transforms
incoming texture coordinates and computes projective tex
ture coordinates (300c). Transform unit 300 may also per
form polygon clipping/culling 300d. Lighting processing
300e also performed by transform unit 300b provides per
vertex lighting computations for up to eight independent
lights in one example embodiment. Transform unit 300 can
also perform texture coordinate generation (300c) for
embossed type bump mapping effects, as well as polygon
clipping/culling operations (300d).

Setup/rasterizer 400 includes a setup unit which receives
vertex data from transform unit 300 and sends triangle setup
information to one or more rasterizer units (400b) perform
ing edge rasterization, texture coordinate rasterization and
color rasterization.

Texture unit 500 (which may include an on-chip texture
memory (TMEM) 502) performs various tasks related to
texturing including for example:

retrieving textures 504 from main memory 112,
texture processing (500a) including, for example, multi

texture handling, post-cache texture decompression,
texture filtering, embossing, Shadows and lighting
through the use of projective textures, and BLIT with
alpha transparency and depth,

bump map processing for computing texture coordinate
displacements for bump mapping, pseudo texture and
texture tiling effects (500b), and

indirect texture processing (500c).
Texture unit 500 outputs filtered texture values to the

texture environment unit 600 for texture environment pro
cessing (600a). Texture environment unit 600 blends poly
gon and texture color/alpha/depth, and can also perform
texture fog processing (600b) to achieve inverse range based
fog effects. Texture environment unit 600 can provide mul
tiple stages to perform a variety of other interesting
environment-related functions based for example on color/
alpha modulation, embossing, detail texturing, texture
Swapping, clamping, and depth blending.

Pixel engine 700 performs depth (z) compare (700a) and
pixel blending (700b). In this example, pixel engine 700
Stores data into an embedded (on-chip) frame buffer memory
702. Graphics pipeline 180 may include one or more embed
ded DRAM memories 702 to store frame buffer and/or
texture information locally. Z compares 700a can also be
performed at an earlier Stage in the graphics pipeline 180
depending on the rendering mode currently in effect (e.g., Z
compares can be performed earlier if alpha blending is not
required). The pixel engine 700 includes a copy operation
700c that periodically writes on-chip frame buffer 702 to
main memory 112 for acceSS by display/video interface unit
164. This copy operation 700c can also be used to copy
embedded frame buffer 702 contents to textures in the main
memory 112 for dynamic texture Synthesis effects. Anti
aliasing and other filtering can be performed during the
copy-out operation. The frame buffer output of graphics
pipeline 180 (which is ultimately stored in main memory
112) is read each frame by display/video interface unit 164.
Display controller/video interface 164 provides digital RGB
pixel values for display on display 102.
Graphics Pipeline Synchronization Mechanism
As shown in FIG. 4, the rendering pipeline of system 50

consists of Several asynchronous components. Among them
are the main processor 110 generating graphics commands,
the graphics and audio processor 114 consuming the com

15

25

35

40

45

50

55

60

65

8
mands and producing frame buffers, and the display
controller/video interface 164 displaying the frame buffers.
The present invention provides a mechanism to Synchronize
these components-allowing for various programming
models with different levels of complexity.

In the example embodiment, main processor 110 should
be coordinated with the graphics and audio processor 114.
For example, primitive data and texture data that the main
processor 110 provides should remain available until the
graphics and audio processor 114 has read it, after which the
main processor can alter the data for the next frame or delete
it as necessary. Also, the graphics and audio processor 114
should be coordinated with the display controller/video
interface 164 Such that the embedded frame buffer 702 is
only copied to an inactive external frame buffer 113, and the
display controller/video interface 164 will Switch to scan
ning out the new external frame buffer at the right time
freeing up the previously Scanned-out external frame buffer
for use by the next frame. Other applications for Synchro
nization include other memory coherence tasks for portions
of main memory 112 shared between the main processor 110
and the graphics and audio processor 114.
One mechanism the example embodiment provides for

Synchronization is a So-called “draw done” command. In
this particular example, the “draw done” command is a
wrapper around two Synchronization functions in the pre
ferred embodiment: a “set draw done” and a “wait draw
done.” The “set draw done” command sends a draw-done
token into a first in first out buffer between the main
processor 110 and the graphics and audio processor 114 and
flushes that buffer. The “wait draw done” command waits for
the graphics pipeline 180 to flush and the token to appear at
the bottom of the graphics pipeline. Instead of waiting for
the token, one can also make use of a callback that happens
as a result of a draw-done interrupt. This callback runs with
interrupt disabled, and thus completes quickly. The function
to Set the callback routine may also return the previous
callback function pointer.

In addition to the “draw done” synchronization mecha
nism described above, the preferred embodiment of system
50 also includes a “draw sync' command used to detect that
the graphics pipeline 180 has completed processing of
certain commands (e.g., completely rendered certain
geometry). Using this “draw Sync’ mechanism, the pro
grammer can Send a variable content token, e.g., a 16-bit
number of the main processor 110's choosing, down the
graphics pipeline 180. This token is Stored in a token register
704 once it reaches a predetermined point in the graphics
pipeline-in this particular example, the very bottom of the
graphics pipeline within the pixel engine 700. Main proces
Sor 110 can read token register 704 by sending an additional
command to the graphics and audio processor 114. When the
token register value returned matches the token the main
processor 110 has sent, the main processor knows that the
particular geometry associated with the token has been
completely rendered.

In more detail, the graphics and audio processor may
include the following commands in its repertoire of Syn
chronization commands:
GXSetDrawSync (Token); and
GXRead DrawSync (Token).
In these examples, the argument “Token” is a 16-bit

unsigned integer value. In response to the GXSetDrawSync
command, the graphics pipeline 180 hardware writes Token
into token register 704 when this command reaches the
bottom of the drawing pipeline. The register 704 can be read
back (e.g., polled) to check the progress of drawing. In the

US 6,867,781 B1
9

preferred embodiment, the GXDrawSync thus allows one to
insert a number (16-bit token) into the graphics pipeline 180
and read the token value when it reaches the bottom of the
graphics pipeline, without forcing the graphics pipeline to be
flushed (and without creating a “bubble” of idle cycles
within the graphics pipeline). The GXRead DrawSync com
mand reads the token register 704 at the bottom of the
graphics pipeline 180, and returns the token value.

In a particular example implementation, an interrupt line
706 is provided from pixel engine 700 to processor interface
150. This interrupt line 706 is associated with the token
register 704 and associated function. Pixel engine 700
asserts this interrupt line 706 as active (e.g., high) when the
token register 704 within pixel engine 700 has received and
stored a token in response to the “GXSetDrawSync’ com
mand described above. This interrupt function can be
enabled or disabled by main processor 10 by writing an
interrupt enable value to a further interrupt control register
(not shown) within pixel engine 700. Main processor 110
can clear the interrupt once asserted by writing to the
interrupt control register within the pixel engine 700, and
can poll the contents of token register 700 by sending the
“Read DrawSync’ command described above.

In the preferred embodiment, an application running on
main processor 110 can register a token interrupt callback
asserting a “GXDrawSyncCallback’ command. The call
back's argument is the value of the most recently encoun
tered token. Since it is possible to miss tokens (graphics
processing does not stop while the callback is running), the
application should be capable of deducing if any tokens have
been missed (e.g., by using monotonically increasing
values).

FIG. 6 shows an example flowchart using the token
synchronization mechanism described above. The FIG. 6
flowchart might, for example, be performed by an applica
tion running on main processor 110. In this particular
example, the application inserts one or more graphics com
mands into the graphics pipeline 180 (block 800), and
generates a unique data message (block 802) and inserts that
unique data message into the graphics pipeline as a token
using the SetDrawSync command described above (block
804). In this particular example, the inserted token is a
unique Structured data object or message that comprises a
non-reducible textual element in the data that is being
parsed-for example, a variable name, a value, a number, a
character or a word. The application may then perform other
tasks while waiting for an interrupt from pixel engine 700
(block 806). Once the interrupt is received, the application
may read pixel engine token register 704 using the Get
DrawSync command discussed (block 808). When the appli
cation retrieves the contents of token register 704 it may
compare that value with a particular value it sent as a token
to determine whether the value matches (decision block
810). If the comparison is favorable, then the application
may perform a task (block 812) requiring Synchronization
with the graphics pipeline 180-Since the application
“knows” that the graphics pipeline 180 has finished pro
cessing command(s) inserted prior to the token by block
800.

The following is an example usage:

void GXSetDrawsync(u16 token);
u16 GXRead Drawsync();
typedef void (*GXDrawsyncCallback)(u16 token);
GXDrawsyncCallback GXSetDrawsyncCallback
(GXDrawsyncCallback cb);

15

25

35

40

45

50

55

60

65

10
The Synchronization token described above permits appli

cations running on main processor 110 to define any number
of different Synchronization events, and distinguish between
those Synchronization events based on token value. In the
preferred embodiment, the graphics pipeline 180 does not
modify the token value so that the main processor 110 can
easily recognize it-but in other embodiments, the graphics
pipeline 180 could perform a predetermined function on the
token value to change its value without destroying the ability
of the main processor 110 to correlate tokens it inserts into
the graphics pipeline 180 with token values received at the
pixel engine 700. In the preferred embodiment, the token
register 704 is disposed at the very bottom of the graphics
pipeline 180, but it could be disposed at other places-or
multiple token registers and associated interrupt lines could
be provided if desired to monitor geometry completion
States other than final completion. One useful application of
this Synchronization mechanism is when main processor 110
writes to memory Separate from the graphics pipeline 180
(e.g., a main memory 112 that is shared between the main
processor 110 and the graphics pipeline 180) and wants to
maintain memory coherence.
Other Example Compatible Implementations

Certain of the above-described system components 50
could be implemented as other than the home Video game
console configuration described above. For example, one
could run graphics application or other Software written for
system 50 on a platform with a different configuration that
emulates system 50 or is otherwise compatible with it. If the
other platform can Successfully emulate, Simulate and/or
provide Some or all of the hardware and Software resources
of system 50, then the other platform will be able to
Successfully execute the Software.
AS one example, an emulator may provide a hardware

and/or Software configuration (platform) that is different
from the hardware and/or Software configuration (platform)
of system 50. The emulator system might include software
and/or hardware components that emulate or Simulate Some
or all of hardware and/or Software components of the System
for which the application Software was written. For example,
the emulator System could comprise a general purpose
digital computer Such as a personal computer, which
executes a Software emulator program that Simulates the
hardware and/or firmware of system 50.
Some general purpose digital computers (e.g., IBM or

MacIntosh personal computers and compatibles) are now
equipped with 3D graphics cards that provide 3D graphics
pipelines compliant with DirectX or other standard 3D
graphics command APIs. They may also be equipped with
Stereophonic Sound cards that provide high quality Stereo
phonic Sound based on a Standard Set of Sound commands.
Such multimedia-hardware-equipped personal computers
running emulator Software may have Sufficient performance
to approximate the graphics and Sound performance of
system 50. Emulator software controls the hardware
resources on the personal computer platform to Simulate the
processing, 3D graphics, Sound, peripheral and other capa
bilities of the home video game console platform for which
the game programmer wrote the game Software.

FIG. 7A illustrates an example overall emulation process
using a host platform 1201, an emulator component 1303,
and a game Software executable binary image provided on a

US 6,867,781 B1
11

Storage medium 62. Host 1201 may be a general or Special
purpose digital computing device Such as, for example, a
personal computer, a Video game console, or any other
platform with sufficient computing power. Emulator 1303
may be Software and/or hardware that runs on host platform
1201, and provides a real-time conversion of commands,
data and other information from Storage medium 62 into a
form that can be processed by host 1201. For example,
emulator 1303 fetches “source” binary-image program
instructions intended for execution by system 50 from
Storage medium 62 and converts these program instructions
to a target format that can be executed or otherwise pro
cessed by host 1201.
AS one example, in the case where the Software is written

for execution on a platform using an IBM PowerPC or other
Specific processor and the host 1201 is a personal computer
using a different (e.g., Intel) processor, emulator 1303
fetches one or a Sequence of binary-image program instruc
tions from storage medium 1305 and converts these program
instructions to one or more equivalent Intel binary-image
program instructions. The emulator 1303 also fetches and/or
generates graphics commands and audio commands
intended for processing by the graphics and audio processor
114, and converts these commands into a format or formats
that can be processed by hardware and/or Software graphics
and audio processing resources available on host 1201. AS
one example, emulator 1303 may convert these commands
into commands that can be processed by Specific graphics
and/or or Sound hardware of the host 1201 (e.g., using
standard DirectX, OpenGL and/or sound APIs).
An emulator 1303 used to provide some or all of the

features of the video game system described above may also
be provided with a graphic user interface (GUI) that sim
plifies or automates the Selection of various options and
Screen modes for games run using the emulator. In one
example, such an emulator 1303 may further include
enhanced functionality as compared with the host platform
for which the software was originally intended.

FIG. 7B illustrates an emulation host system 1201 Suit
able for use with emulator 1303. System 1201 includes a
processing unit 1203 and a system memory 1205. A system
buS 1207 couples various System components including
system memory 1205 to processing unit 1203. System bus
1207 may be any of several types of bus structures including
a memory buS or memory controller a peripheral bus, and a
local bus using any of a variety of bus architectures. System
memory 1207 includes read only memory (ROM) 1252 and
random access memory (RAM) 1254. A basic input/output
system (BIOS) 1256, containing the basic routines that help
to transfer information between elements within personal
computer System 1201, Such as during Start-up, is Stored in
the ROM 1252. System 1201 further includes various drives
and associated computer-readable media. A hard disk drive
1209 reads from and writes to a (typically fixed) magnetic
hard disk 1211. An additional (possible optional) magnetic
disk drive 1213 reads from and writes to a removable
“floppy” or other magnetic disk 1215. An optical disk drive
1217 reads from and, in Some configurations, writes to a
removable optical disk 1219 such as a CD ROM or other
optical media. Hard disk drive 1209 and optical disk drive
1217 are connected to system bus 1207 by a hard disk drive
interface 1221 and an optical drive interface 1225, respec
tively. The drives and their associated computer-readable
media provide nonvolatile Storage of computer-readable
instructions, data Structures, program modules, game pro
grams and other data for personal computer System 1201. In
other configurations, other types of computer-readable

15

25

35

40

45

50

55

60

65

12
media that can Store data that is accessible by a computer
(e.g., magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, random access memories
(RAMs), read only memories (ROMs) and the like) may also
be used.
A number of program modules including emulator 1303

may be stored on the hard disk 1211, removable magnetic
disk 1215, optical disk 1219 and/or the ROM 1252 and/or
the RAM 1254 of system memory 1205. Such program
modules may include an operating System providing graph
ics and Sound APIs, one or more application programs, other
program modules, program data and game data. A user may
enter commands and information into personal computer
system 1201 through input devices such as a keyboard 1227,
pointing device 1229, microphones, joysticks, game
controllers, Satellite dishes, Scanners, or the like. These and
other input devices can be connected to processing unit 1203
through a Serial port interface 1231 that is coupled to System
bus 1207, but may be connected by other interfaces, such as
a parallel port, game port Fire wire buS or a universal Serial
bus (USB). A monitor 1233 or other type of display device
is also connected to system bus 1207 via an interface, such
as a video adapter 1235.
System 1201 may also include a modem 1154 or other

network interface means for establishing communications
over a network 1152 Such as the Internet. Modem 1154,
which may be internal or external, is connected to System
bus 123 via serial port interface 1231. A network interface
1156 may also be provided for allowing system 1201 to
communicate with a remote computing device 1150 (e.g.,
another system 1201) via a local area network 1158 (or such
communication may be via wide area network 1152 or other
communications path Such as dial-up or other communica
tions means). System 1201 will typically include other
peripheral output devices, Such as printers and other stan
dard peripheral devices.

In one example, video adapter 1235 may include a 3D
graphics pipeline chip Set providing fast 3D graphics ren
dering in response to 3D graphics commands issued based
on a Standard 3D graphics application programmer interface
Such as Microsoft's DirectX 7.0 or other version. A set of
Stereo loudspeakers 1237 is also connected to System bus
1207 via a Sound generating interface Such as a conventional
“sound card” providing hardware and embedded software
Support for generating high quality Stereophonic Sound
based on Sound commands provided by bus 1207. These
hardware capabilities allow system 1201 to provide suffi
cient graphics and Sound Speed performance to play Soft
ware Stored in Storage medium 62.

All documents referenced above are hereby incorporated
by reference.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiment, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica
tions and equivalent arrangements included within the Scope
of the appended claims.
We claim:
1. A method of Synchronizing at least one process external

to a graphics pipeline with the graphics pipeline comprising:
Sending a programmable content Synchronization token
down the graphics pipeline;

detecting when the Synchronization token has reached a
predetermined point in the pipeline; and

Signaling the external process when the Synchronization
token has been detected to reach said predetermined
point in the pipeline.

US 6,867,781 B1
13

2. The method of claim 1 wherein the synchronization
token comprises a variable content data message the graph
ics pipeline does not modify.

3. The method of claim 1 wherein the detecting step
comprises comparing a value returned by a token register
with the value of the Sent Synchronization token.

4. The method of claim 1 further including Specifying,
with an application program, a variable Synchronization
token value to Send down the graphics pipeline.

5. The method of claim 1 wherein the synchronization
token comprises a 16-bit variable value.

6. The method of claim 1 wherein the detecting step
includes polling a Synchronization token register at the end
of the pipeline in response to an interrupt.

7. A method of Synchronizing at least one process external
to a graphics pipeline with the graphics pipeline, Said
graphics pipeline being of the type including a command
processor, a transformation unit, a lighting unit, a texture
coordinate generator, a texture mapper, a rasterizer, a
blender, a pixel engine and a frame buffer, the method
comprising:

inserting a variable content Synchronization message into
the graphics pipeline;

capturing the variable content Synchronization message at
a predetermined position within the pipeline,

Signaling the external proceSS when the variable content
Synchronization message has reached the predeter
mined position within the pipeline; and

testing whether the captured variable content Synchroni
Zation message corresponds to the inserted variable
content Synchronization message.

8. The method of claim 7 wherein the signaling step
comprises generating an interrupt when the variable content
Synchronization message reaches the bottom of the pipeline.

9. The method of claim 7 wherein the capturing step
comprises Storing the variable content Synchronization mes
Sage in a register, and the determining Step includes reading
the contents of the register.

10. The method of claim 7 wherein the pixel engine
performs the Signaling Step.

11. The method of claim 7 wherein the graphics pipeline
does not modify the variable content Synchronization mes
Sage.

12. A graphics pipeline including:
a command processor,
a transformation unit,
a lighting unit,

15

25

35

40

45

14
a texture coordinate generator,
a texture mapper,
a rasterizer,
a blender,
a pixel engine, and
a frame buffer,
wherein the command processor receives a variable con

tent Synchronization message and passes the variable
content Synchronization message through the graphics
pipeline to the pixel engine, the pixel engine including
a register that captures the variable content Synchroni
Zation message and Signals at least one process external
to the graphics pipeline when the variable content
Synchronization message has reached the pixel engine.

13. The graphics pipeline of claim 12 wherein the graph
ics pipeline does not alter the variable content Synchroniza
tion message.

14. A graphics System of the type that receives a stream
of graphics commands and generates an image based on the
graphics command Stream, the graphics System being
adapted to receive, within the Stream of graphics commands,
a Synchronization token comprising a variable content Syn
chronization message, the graphics System providing a
response to an inquiry as to whether portions of the graphics
Stream earlier in a graphics command Sequence with respect
to the Synchronization token have been processed to allow
Synchronization of graphics System events with at least one
process external to the graphics command Stream process
ing.

15. The graphics system as in claim 14 wherein the
graphics System includes an application specific integrated
circuit.

16. The graphics system as in claim 14 wherein the
graphics System includes a 3D graphics pipeline.

17. A method of synchronizing a process external to a 3D
graphics pipeline with the 3D graphics pipeline, the 3D
graphics pipeline being of the type including command
processing, transformation, lighting, texture coordinate
generation, texture mapping, rasterizing, and blending, an
improvement comprising:

inserting a variable content Synchronizing token into the
graphics pipeline; and

Signaling the external process upon the token reaching a
predetermined point in the graphics pipeline.

k k k k k

