
i

Addendum 2.0:8
to

fbForth 2.0
A File-Based Cartridge Implementation

of TI Forth

Lee Stewart

June 20, 2016

ii

Copyright © 2014 – 2016 by Lee Stewart

Permission is hereby granted to copy and distribute this document at will.

Table of Contents

1 Introduction..1
2 Startup Changes..2

 2.1 The Opening Menu...2
 2.2 Enabling 1024-Byte SAMS Mapping...2
 2.3 Changes to the fbForth 2.0 ISR...2
 2.4 Changes to COLD...3
 2.5 Redefinition of BOOT..3

3 Interrupt Service Routines (ISRs)...4
 3.1 Overview of fbForth 2.0:8’s ISR..4
 3.2 A Detailed Look at fbForth 2.0:8’s ISR..4
 3.3 Installing a User ISR...5
 3.4 Example of a User ISR: DEMO...6

 3.4.1 Installing the DEMO ISR..7
 3.4.2 Un-Installing the DEMO ISR..7

 3.5 Some Additional Thoughts Concerning the Use of ISRs..8
4 Screen Font Changes...9
5 TI Forth Block Utilities...10

 5.1 TIFBLK: Display TI Forth Block..10
 5.2 TIFIDX: Display TI Forth Index Lines..11
 5.3 TIF2FBF: Copy TI Forth Blocks to fbForth Blocks...12
 5.4 TIFVU: TI Forth Browser/Copier..12

6 Bug Fixes..15
 Appendix A The fbForth 2.0 Glossary...16

 A.1 fbForth 2.0 Word Descriptions...16
 Appendix B User Variables in fbForth 2.0...29

 B.1 fbForth 2.0 User Variables (Address Offset Order)..29
 B.2 fbForth 2.0 User Variables (Variable Name Order)..31

 Appendix C fbForth 2.0 Load Option Directory..33
 C.1 Option: 64-Column Editor...33
 C.2 Option: CPYBLK -- Block Copying Utility..33
 C.3 Option: Memory Dump Utility..33
 C.4 Option: TRACE -- Colon Definition Tracing..33
 C.5 Option: Printing Routines..33
 C.6 Option: TMS9900 Assembler..34
 C.7 Option: CRU Words..34
 C.8 Option: More Useful Stack Words etc...34
 C.9 Option: Stack-based String Library...34
 C.10 Option: DIR -- Disk Catalog Utility..34
 C.11 Option: CAT -- Disk Catalog Utility...34
 C.12 Option: TI Forth Block Utilities..34

 Appendix D Contents of FBLOCKS..35

iii

iv

1 Introduction 1

1 Introduction

This addendum has “2.0:8” in its title because it was published after the release of fbForth 2.0:8
and is intended as an interim update to fbForth 2.0: A File-Based Cartridge Implementation
of TI Forth, which will be updated in due course.

Detailed in this addendum are bug fixes, words no longer part of fbForth 2.0, modified words
and new words. Some chapter(s) and appendices of the manual have been rewritten in toto and
reference the relevant chapter or appendix of the edition of fbForth 2.0: A File-Based Cartridge
Implementation of TI Forth.

Though I have been careful in coding fbForth 2.0, as with anything else in this document, you
assume responsibility for any use you make of it. Please, feel free to contact me with comments
and corrections at lee@stewkitt.com.

—Lee Stewart
June, 2016

Silver Run, MD

2 2 Startup Changes

2 Startup Changes
This chapter will detail the startup changes for fbForth 2.0 since the manual was last updated.

 2.1 The Opening Menu

The opening menu has two choices for fbForth 2.0 shown in the screen shot below:

• Option 2 will open in 40-column Text mode, TEXT .
• Option 3 will open in 80-column Text mode, TEXT80 , which must not be selected unless

the user has an F18A, V9938 or similar video display processor capable of 80-column
Text mode. Otherwise, the display will be corrupted and VRAM will be improperly set
up.

 2.2 Enabling 1024-Byte SAMS Mapping

After selection of one of the fbForth 2.0 options, the first thing that the initialization code does is
to set up 1024-byte SAMS, whether or not a SAMS card is present! Then, it tests for proper
SAMS operation by writing a 16-bit value to an arbitrary address, mapping another SAMS bank
to the 4KiB segment containing the written value and, finally, testing for the written value. If the
written value is found, the SAMS mapping did not work. If it is not found, SAMS mapping
obviously worked. The SAMS flag is set to 0 or 1, accordingly. It is this flag that is tested by
SAMS? , see Appendix A “The fbForth 2.0 Glossary”.

 2.3 Changes to the fbForth 2.0 ISR

The fbForth 2.0 ISR is now enabled at startup so that the new speech (SAY and STREAM) and
sound word (PLAY) will work. The speech and sound word ISRs are driven by the fbForth 2.0

2 Startup Changes 3

ISR. It is easy enough to disable it if the user does not use speech, sound or a user ISR and wants
to recover the little bit of time it takes for the fbForth 2.0 ISR to check for non-existent ISRs to
service. See Chapter 3 “Interrupt Service Routines (ISRs)” for details.

 2.4 Changes to COLD

COLD is the last routine executed by the fbForth 2.0 startup code. Formerly, it was a high-level
Forth word that called another high-level Forth word (BOOT) at its conclusion. They have both
been combined into a single ALC routine that (re-)sets the Forth environment to the default
startup conditions.

Holding down a key immediately upon execution of COLD will force COLD to look for FBLOCKS
from that disk. If the user executed COLD , the last loaded font is reloaded regardless of the new
disk selection indicated by the held key; whereas, at startup, the held key depressed immediately
after the menu selection, will, in fact, also cause the search for FBFONT on the held key’s disk.
Both invocations of COLD will not attempt to load FBLOCKS if <ENTER> is the held key.

If <ENTER> was held down at powerup or after execution of BOOT (see next section), the default
disk drive for both FBLOCKS and FBFONT is DSK1. Though DSK1.FBLOCKS is not loaded,
DSK1.FBFONT is loaded (or, at least, attempted). For the next go-round with COLD executed by
the user, if no key is held down then, both DSK1.FBLOCKS and DSK1.FBFONT will be loaded
if found.

User changes to the following settings will survive a user-executed COLD :

• Display font (see USEFFL , SCRFNT , FNT for how to change font)

• Default colors for all VDP modes (see definition of DCT for how to change)

• Default VDP mode, which should be limited to TEXT80 (0) or TEXT (1) (see definition of
DCT for how to change)

• Default S0 and TIB changed by S0&TIB! .

 2.5 Redefinition of BOOT

BOOT has been redefined to restart fbForth 2.0 at the cartridge startup code. The desired default
VDP text mode of TEXT80 or TEXT may be set by pushing to the stack 0 or 1, respectively, prior
to executing BOOT :

0 BOOT

will set the default VDP text mode to TEXT80 and reboot fbForth 2.0 just as though the user had
made the selection on the opening screen.

BOOT may also be executed with nothing on the stack:

BOOT

 which will set the default VDP text mode to TEXT as though the user had executed

1 BOOT

Holding a disk-selection key or <ENTER> will have the same effect as at powerup selection.

4 3 Interrupt Service Routines (ISRs)

3 Interrupt Service Routines (ISRs)
This chapter is a complete replacement of the corresponding Chapter 10 of the manual.

 3.1 Overview of fbForth 2.0:8’s ISR

Though the user may disable it1, fbForth 2.0’s ISR is now hooked at startup and is executed for
every interrupt. There are three entry points into fbForth 2.0’s ISR. Their ALC labels are INT1,
INT2 and INT3.

INT1 is where the console ISR branches at the end of its interrupt processing. It processes any
pending speech (started with SAY or STREAM) and sound (started with PLAY). It then looks to
see whether a user ISR is installed in user variable ISR . If so, it modifies the fbForth 2.0 inner
interpreter’s NEXT (R15) to re-enter at INT2.

Re-entry at INT2 will restore NEXT and set up re-entry yet again at INT3 for cleanup before
exiting by branching to the user ISR.

When the user ISR finishes, fbForth 2.0’s ISR is re-entered at INT3 for cleanup via the inner
interpreter. Upon exit, the inner interpreter will resume processing Forth words where it was
interrupted.

A user ISR will be executed only if the user has installed an ISR using the steps detailed in § 3.3
“Installing a User ISR”.

 3.2 A Detailed Look at fbForth 2.0:8’s ISR

The console ISR branches to the contents of 83C4h (R2 of the console ISR workspace [83C0h]) if
it is non-zero. In fbForth 2.0:8, 83C4h contains the address of ISR entry point INT1 (currently,
3020h) mentioned in the last section. This same entry point is in user variable INTLNK , as well.
This means that the console ISR will branch to the fbForth 2.0 ISR with BL *R12 through the
GPL workspace (83E0h), R12 containing the ISR’s entry point.

Upon entry at INT1 from the console ISR, the fbForth 2.0 ISR does the following:

• Checks for pending speech and sound. If found, the following ISR branch stack is set up
and executed:

◦ Relevant speech ISR address, if speech pending;

◦ Sound-list #1 ISR address, if pending;

◦ Sound-list #2 ISR address, if pending;

◦ fbForth 2.0 ISR return address.

• Restores interrupted bank.

• Checks user variable ISR for a non-zero value, implying a user ISR is installed. If a user
ISR is defined, modifies NEXT to re-enter fbForth 2.0’s ISR at INT2 at the next branch
through NEXT via B *NEXT or B *R15, which will set up to execute the user ISR.

1 fbForth 2.0’s ISR may be disabled by zeroing 83C4h with HEX 0 83C4 ! .

3 Interrupt Service Routines (ISRs) 5

• .Exits the fbForth 2.0 ISR by changing to the ISR workspace (83C0h) and returning to
the caller of the console ISR.

Upon entry at INT2 (because we have a user ISR defined), the fbForth 2.0 ISR does the
following:

• Disables interrupts via LIMI 0.

• Disables VDP interrupt.

• Restores NEXT to its value before it was changed at INT1.

• Sets the fbForth “pending interrupt” flag.

• Pushes current IP (next word pointer) to the return stack.

• Changes IP to INT3 for cleanup re-entry to fbForth 2.0 ISR.

• Copies the value in ISR to W (current word pointer) so inner interpreter will execute the
user ISR.

• Branches to inner interpreter to execute user ISR via DOEXEC.

Upon entry at INT3 (because we are returning from executing the user ISR), the fbForth 2.0 ISR
does the following:

• The inner interpreter actually branches to the address 4 bytes after INT3, which pops the
saved IP from the return stack.

• Clears the fbForth “pending interrupt” flag.

• Clears the pending VDP interrupt by reading VDP status.

• Re-enables VDP interrupt.

• Re-enables interrupts via LIMI 2.

• Branches to inner interpreter via NEXT to continue executing the interrupted list of word
addresses.

If the user’s ISR (see below) is properly installed, fbForth 2.0’s ISR, at interrupt, modifies NEXT
so that the very next time B *NEXT or B *R15 is executed from fbForth 2.0’s workspace,
fbForth 2.0’s ISR is re-entered to disable interrupts and to insert execution of the user ISR and
its cleanup into the fbForth 2.0 inner interpreter’s list of execution addresses (CFAs).

The TI-99/4A has the built-in ability to execute an interrupt routine every 1/60 second. This
facility has been extended by the fbForth 2.0 system so that the routine to be executed at each
interrupt period may be written in Forth rather than in assembly language. This is an advanced
programming concept and its use depends on the user’s knowledge of the TI-99/4A.

 3.3 Installing a User ISR

The user variables ISR and INTLNK are provided to assist the user in using ISRs. Initially,
INTLNK contains the address of the address of the fbForth 2.0 ISR handler and ISR is set to 0 to
indicate no user ISR. To correctly use user variable ISR , the following steps should be followed:

6 3.3 Installing a User ISR

Step Forth Code

1) Create and test an fbForth 2.0 routine to perform the
function. Let’s call it MYISR : : MYISR … ;

2) Clear the fbForth 2.0 ISR hook to temporarily disable it: HEX 0 83C4 !

3) Determine the Code Field Address (CFA) of the routine in
(1): ' MYISR CFA

4) Write the CFA from (3) (still on the stack) into user
variable: ISR : ISR !

5) Write the contents of INTLNK into 83C4h (33732) to re-
enable the fbForth 2.0 ISR: HEX INTLNK @ 83C4 !

The ISR linkage mechanism is designed so that your interrupt service routine will be allowed to
execute immediately after each time the fbForth 2.0 system executes the instruction whose
address is in NEXT (as it does at the end of each code word). In addition, the KEY routine has been
coded so that it also executes through NEXT after every keyscan whether or not a key has been
pressed. The execution of the “NEXT” instruction in the inner interpreter is actually coded in TI
Assembler as B *NEXT or B *R15 because fbForth 2.0 workspace register 15 (R15 or NEXT)
always contains the address of “NEXT” (MOV *IP+,W) except, of course, when we temporarily
force its change by installing a user ISR. This executes the same procedure as the fbForth 2.0
Assembler words ;ASM and NEXT, (see Chapter 9 of the manual).

Before installing an ISR, you should have some idea of how long it takes to execute, keeping in
mind that for normal behavior it should execute in less than 16 milliseconds. ISRs that take
longer than that may cause erratic sprite motion, speech and sound because of missed interrupts.
In addition it is possible to bring the fbForth 2.0 system to a slow crawl by using about 99% of
the processor’s time for the ISR.

The ISR capability has obvious applications in game software as well as for playing background
music or for spooling blocks from file to printer while other activities are taking place. This final
application will require that file buffers and user variables for the spool task be separate from the
main Forth task or a very undesirable cross-fertilization of buffers may result. In addition it
should be mentioned that disk activity causes all interrupt service activity to halt.

ISRs in fbForth 2.0 can be written as either colon definitions or as ASM: definitions. The former
permits very easy routine creation, and the latter permits the same speed capabilities as routines
created by the Editor/Assembler. Both types can be used in a single routine to gain the
advantages of both.

 3.4 Example of a User ISR: DEMO

An example of a simple ISR is given below. This example also illustrates some of the problems
associated with ISRs and how they can be circumvented. The problems are:

1) A contention for PAD between a normal Forth command and the ISR routine.

2) Long execution time for the ISR routine. (Even simple routines, especially if they
include output conversion routines or other words that nest Forth routines very deeply,
will not complete execution in 1/60 second.)

3 Interrupt Service Routines (ISRs) 7

The problem listed in (1) is overcome by moving PAD in the interrupt routine to eliminate the
interference between the foreground and the background task. An example of problem (2) would
be attempting to use the built-in number formatting routines, which are quite general and, hence,
pay a performance penalty. DEMO performs this conversion rather crudely, but fast enough that
there is adequate time remaining in each 1/60 second to do meaningful computing.

0 VARIABLE TIMER (TIMER will hold the current count)
: UP 100 ALLOT ; (move HERE and thus PAD up 100 bytes)
: DOWN -100 ALLOT DROP ; (restore PAD to its original location)
: DEMO UP (move PAD to avoid conflict)
 1 TIMER +! TIMER @ (increment TIMER , leave on stack)
 PAD DUP 5 + (ready to loop from PAD + 5 down to PAD + 1)
 DO

 0 10 U/ (make positive double, get 1st digit)
 SWAP 48 + (generate ASCII digit)
 I C! (store to PAD)
 -1 +LOOP (decrement loop counter)
 PAD 1+ SCRN_START @ 5 VMBW (write to screen)
 DOWN ; (restore PAD location)

 3.4.1 Installing the DEMO ISR

To install this ISR, the following code should be executed:

HEX 0 83C4 ! (clear console ISR hook)
' DEMO CFA (get CFA of the word to be installed as user ISR)
ISR ! (place it in user variable ISR)
INTLNK @ (get the fbForth 2.0 ISR address to the stack)
HEX 83C4 ! (re-install fbForth 2.0 ISR into console ISR hook)

(Note: the CFA of DEMO must be in user variable ISR
before writing to 83C4h)

 3.4.2 Un-Installing the DEMO ISR

To reverse the installation of the ISR, the following code should be executed:

HEX 0 83C4 ! (clear console ISR hook)
0 ISR ! (disable user ISR by zeroing user variable ISR)
INTLNK @ (get the fbForth 2.0 ISR address to the stack)
HEX 83C4 ! (re-install fbForth 2.0 ISR into console ISR hook)

8 3.5 Some Additional Thoughts Concerning the Use of ISRs

 3.5 Some Additional Thoughts Concerning the Use of ISRs

ISRs are uninterruptible. Interrupts are disabled by the code that branches to your ISR routine
and they are not enabled until just before branching back to the foreground routine. Do not
enable interrupts in your interrupt routine.

1) Caution must be exercised when using PABs, changing user variables or using disk
buffers in an ISR, as these activities will likely interfere with the foreground task unless
duplicate copies are used in the two processes.

2) An ISR must never expect nor leave anything on the stacks. It may however use them in
the normal manner during execution.

3) Disk activity disables interrupts as do most of the other DSRs in the TI-99/4A. An ISR
that is installed will not execute during the time interval in which disk data transfer is
active. It will resume after the disk is finished. Note that it is possible to LOAD from disk
while the ISR is active. It will wait for about a second each time the disk is accessed.
The dictionary will grow with the resultant movement of PAD without difficulty.

4 Screen Font Changes 9

4 Screen Font Changes
The default Screen Font File with descenders for ASCII character values 0 – 127 (1024 bytes) is
no longer in ROM. Now, it is to be found in DSK1.FBFONT unless the default disk has been
changed at bootup. The boot DSK #, n, is saved as the 5th byte of the packed string for the default
blocks filename, “DSKn.FBLOCKS”, the 1st byte of which is the string length.

At powerup,

• SCRFNT is set to its new default value of -1;

• The default font is loaded from DSKn.FBFONT by FNT .

At non-powerup COLD , the font file loaded before COLD was invoked is reloaded, unless the user
changed the default value of SCRFNT to 0. The default value of SCRFNT can be changed to 0 to
force loading the console font, with its small caps for lowercase, with the following code:

0 UCONS$ @ 68 + !

UCONS$ is the address of the default-value table of User Variables and 68 (44h) is SCRFNT ’s
position in the table.

If the default font file cannot be found,

• SCRFNT and its default value are set to 0;

• The console font, with small caps for lowercase, is loaded.

If SCRFNT ≠ 0, FNT loads the default font file, the PAB for which follows the fbForth 2.0 disk
buffer, DISK_BUF , in VRAM.

The user can change the default font to come from a binary font file of the user’s choosing with
USEFFL . USEFFL will set up the font-file PAB (immediately follows DISK_BUF in VRAM).
The default font filename will be copied to the font PAB in VRAM.

The fbForth 2.0 word FNT loads either the default font file (can be changed by user) or the
console font into the Pattern Descriptor Table (PDT) depending on the value of the user variable
SCRFNT . The default font is loaded from DSK1.FBFONT by FNT (or from DSKn.FBFONT if
key n is held down) at fbForth 2.0 startup because SCRFNT = -1 at startup. The fbForth 2.0
system default font contains the patterns for ASCII character codes 0 – 127. The font pattern for
each character is 8 bytes, which means that 1KiB of pattern code is loaded into the PDT. This
font contains true lowercase characters with true descenders.

It should be noted that each time the VDP mode is changed (except for Graphics2 [bitmap]), the
current screen font is reloaded. The user can always change the value of SCRFNT to 0 to force
(re)loading the console screen font. Changing SCRFNT back to a non-zero value will switch font
loading to the currently stored font-file name, be it the system or user font file.

10 5 TI Forth Block Utilities

5 TI Forth Block Utilities
Words introduced in this chapter:

TIF2FBF TIFBLK TIFIDX TIFVU

The TI Forth Block Utilities are not part of the resident dictionary so must be loaded from
FBLOCKS (see current FBLOCKS file MENU for TI Forth Block Utilities). They are provided to
make it easy to view TI Forth blocks (called “screens” in TI Forth), index lines of a range of
blocks and copy a range of blocks to an fbForth 2.0 blocks file. The utilities listed in the first
three sections below perform these functions individually. The last section presents a
browser/copier that is patterned after the fbForth 2.0 block editors.

Note that “IS:” is short for “Inout Stream”.

 5.1 TIFBLK: Display TI Forth Block

TIFBLK (IS:blk DSKn)

TIFBLK displays block blk from disk DSKn. The display may be paused/resumed by
tapping any key except <BREAK>, which will abort the display. The display is
automatically paused if the block cannot be displayed all at once.

The following shows the first screen of a Text mode example displayed with the Forth
code just before the screen shot:

TIFBLK 11 DSK2

The display was paused after twelve lines were displayed due to wrapping of 64-character
lines on the 40-character display. Tapping a key will continue the display of the
remaining four lines.

5 TI Forth Block Utilities 11

The following is the same example in Text80 mode using the same Forth code as above:

 5.2 TIFIDX: Display TI Forth Index Lines

TIFIDX (IS:strtBlk endBlk DSKn)

TIFIDX displays the index lines (first lines) of a range of TI Forth blocks (strtBlk to
endBlk) from disk DSKn. The display may be paused/resumed by tapping any key except
<BREAK>, which will abort the display. The display is automatically paused if the block
cannot be displayed all at once.

The following shows the first screen of a Text mode example:

TIFIDX 10 15 DSK2

The index line, (line #0) of each block from block #10 – #15 is listed above. Had more
than 12 blocks (64 characters each index line) been selected, the display would have
paused as for TIFBLK in the previous section.

12 5.2 TIFIDX: Display TI Forth Index Lines

The following is the same example in Text80 mode:

 5.3 TIF2FBF: Copy TI Forth Blocks to fbForth Blocks

TIF2FBF (IS:srcStrtBlk srcEndBlk DSKn dstStrtBlk dstFile)

TIF2FBF functions in much the same way as CPYBLK . The format of the command is
the same except that the source is DSKn, not a filename. The n of DSKn is the disk
number of the TI Forth disk. The destination dstFile must be the name of an existing
blocks file (see MKBFL to create one). The following command will copy blocks 4 – 7
from TI Forth DSK2 to blocks 10 – 13 of DSK1.MYBLOCKS:

TIF2FBF 4 7 DSK2 10 DSK1.MYBLOCKS

 5.4 TIFVU: TI Forth Browser/Copier

TIFVU (IS:blk DSKn)

Browse TI Forth blocks and, optionally, copy a range of blocks to an fbForth blocks file.
The browser is interactive with the following functions:

Key Function

<FCTN+4> View next block.

<FCTN+6> View previous block.

<FCTN+D> View the next panel for Text mode—ignored in Text80 mode.

<FCTN+S> View the previous panel for Text mode—ignored in Text80 mode.

<FCTN+T> View a specific TI Forth block number.

<FCTN+F> Specify a destination fbForth block number for next copy.

<CTRL+F> Specify a destination fbForth blocks file, which must already exist.

<CTRL+S> Copy a range of blocks starting from the displayed TI Forth block to the
displayed destination fbForth block. You are prompted for the number of
blocks to copy after selecting this command.

<FCTN+9> Exit the browser.

Following is an example of the browser/copier in Text mode, which shows three panels
of the same block:

TIFVU 12 DSK2

5 TI Forth Block Utilities 13

Left panel showing
columns 0 – 33.

Middle panel
showing col-
umns 15 – 48.

Right panel showing
columns 30 – 63.

14 5.4 TIFVU: TI Forth Browser/Copier

And, here is the same example in Text80 mode:

6 Bug Fixes 15

6 Bug Fixes
The following bug fixes have been made over a period of time. They are in no particular time
order.

The insert-blank-line function, <CTRL+8> , in the 40/80-column editor would not blank the
entire new line if the cursor were not located in the first column.

The character-copy function in the 40/80-column editor would cause fbForth 2.0 to
crash if the line-insertion and line-deletion functions were used on the last line of a block.
The problem was not testing for a copy-count of 0 before copying the first character,
causing the count to pass 0 before the test if the function was passed a count of 0, which
it is on the last line.

SGN would yield +1 for -32768 (8000h), the largest single-precision (16-bit) negative
number possible on the TI-99/4A.

SSDT was improperly setting the address of the Sprite Pattern Descriptor Table. SSDT is
the easiest way for a user to change the Sprite Pattern Descriptor Table in graphics mode
to a different location from the the default 800h. The default, 800h, is coincident with
the text Pattern Descriptor Table. It is easy enough to change the SSDT in code, but it is
not trivial. Besides, SSDT not only changes the user variable read by the constant,
SPDTAB , but also changes VDP register #6 to the proper value and executes DELALL to
initialize sprites.

SPRPUT was setting the x position to 255 (rightmost position) if y was 0.

MOTION was setting the x | y vector to -1 if the y | x vector was negative.

If sprite automotion was not stopped in Graphics mode, blinking text appeared in Text,
Text80, Bitmap and Split modes. Automotion was not stopped when changing VDP
modes. For some reason, if sprite automotion is enabled and sprites are left defined,
Text80, Bitmap and Split modes show blinking areas on the screen that correspond to
those sprites, particularly those defined with patterns in the text PDT area.

BSAVE was not explicitly saving the pointer to the last word in each of the Forth and
Assembler vocabularies.

BSAVE and BLOAD were not saving and loading, respectively, the vocabulary link fields
of the Forth and Assembler vocabularies.

DELALL was only marking the first 8 sprites as deleted, i.e., y = D0h, when it should have
been doing it for all 32! The upshot of this bug was that, as soon as sprite #7 was
defined, all of the remaining sprites were suddenly defined as char 0, transparent and
positioned at (0,0)!

CPYBLK (loaded from FBLOCKS) was copying blocks from previous blocks files if the
corresponding blocks were in block buffers. EMPTY-BUFFERS was added to fix it.

16 Appendix A The fbForth 2.0 Glossary

 Appendix A The fbForth 2.0 Glossary
This appendix corresponds to Appendix D of the manual. The following word descriptions are
only those that have been removed, changed or are new to fbForth 2.0. As in the manual, they
are in ASCII collating order, which is indicated in the footer in this appendix.

Words that have been removed appear in this appendix but have the word and definition
completely struck through. Those words with changed definitions have only the replaced part of
the definition struck through. New words, of course, are not struck through but are preceded with

a icon.

 A.1 fbForth 2.0 Word Descriptions

(ABORT) Resident

(---)

Executes after an error when WARNING < 0. Normally, WARNING = 1. (ABORT)
normally executes ABORT , but may be redirected (with care!) to execute a user’s
alternative procedure. It is defined as

: (ABORT) ABORT ;

If you wished to have (ABORT) execute your error procedure, say MY_ERROR_PROC ,
you would need to replace the CFA of ABORT in the definition of (ABORT) with the
CFA of MY_ERROR_PROC . Fortunately, this is easy to do! The CFA of ABORT sits in
the parameter field of (ABORT) , the address (PFA) of which is what ticking
(ABORT) gives you. You can verify this with the following code:

HEX ok:0

' (ABORT) @ U. 6AAC ok:0

' ABORT CFA U. 6AAC ok:0

The second line above ticks (ABORT) , fetches the resulting PFA’s contents and
prints what should be the CFA of ABORT . The third line above ticks ABORT , gets its
CFA and prints it. As you can see, they are, indeed, the same address.

Now, to install your error procedure, simply get its CFA and stash it in the parameter
field of (ABORT) as follows:

' MY_ERROR_PROC CFA ok:1

' (ABORT) ! ok:0

To get your error procedure to run at the next error, set WARNING to a negative
number as below:

-1 WARNING ! ok:0

To re-instate normal fbForth 2.0 error handling, you only need to store a positive
number in WARNING . You can restore the default action of (ABORT) with the
following Forth code:

' ABORT CFA ok:1

' (ABORT) ! ok:0

 Appendix A The fbForth 2.0 Glossary 17

;CODE [immediate word] Resident

([] | C0DEh ---)

;CODE is now a synonym for DOES>ASM: and terminator for CODE: .

If STATE is “compiling”, ;CODE executes DOES>ASM: , which expects nothing on the
stack. In this mode, it is used with <BUILDS in the form:

: cccc <BUILDS … ;CODE <assembly mnemonics> NEXT,

Stops compilation and terminates a new defining word, cccc , by compiling
(;CODE) . Sets the CONTEXT vocabulary to ASSEMBLER , assembling to machine
code the assembly mnemonics following ;CODE .

When cccc later executes in the form:

cccc nnnn

the word nnnn will be created with its execution procedure given by the machine
code following (;CODE) in the definition of cccc , i.e., when nnnn is executed, it
does so by jumping to that code in cccc . An existing defining word (<BUILDS in
this case) must exist in cccc prior to ;CODE . See Chapter 9 of the manual for more
details.

If STATE is “executing”, ;CODE is the terminator for CODE: cccc … ;CODE , which
defines a new word cccc with machine code contents that do not require the use of ,
to compile them. It is much faster than compiling with CODE cccc … NEXT, . The
following ALC quadruples the value on the stack by double addition:

ASM: QUAD
 *SP *SP A,
 *SP *SP A,
;ASM

The above code can be re-stated in machine code without requiring the TMS9900
Assembler:

HEX CODE: QUAD A659 A659 ;CODE

The equivalent code using CODE cccc … NEXT, is:

HEX CODE QUAD A659 , A659 , NEXT,

With a very long definition, using CODE: cccc … ;CODE is significantly faster.

 >MAP Resident

(bank addr ---)

This word is ported from TurboForth code courtesy of Mark Wills.

If a SAMS card is present, >MAP maps memory bank bank to address addr.

Address addr should be a valid address on a 4KiB boundary, viz., 2000h, 3000h,
A000h, B000h, C000h, D000h, E000h or F000h. Bank bank should be a number
between 0 and FFh.

It is best to use S0&TIB! , q.v., to change S0 and TIB both to EFA0h or DFA0h
(exactly 4KiB or 8KiB [1 or 2 SAMS page(s)] lower than the default FFA0h), thus
allowing the use of E000h and/or F000h with impunity!

18 A.1 fbForth 2.0 Word Descriptions

When a SAMS memory expansion card is installed, the 32KiB of CPU RAM is
actually taken from the SAMS memory. At startup, fbForth 2.0 reserves the
following banks of SAMS memory for the “standard” 32KiB RAM:

Bank
4KiB

Boundary

F8h 2000h

F9h 3000h

FAh A000h

FBh B000h

FCh C000h

FDh D000h

FEh E000h

FFh F000h

As can be seen from the above table, fbForth assumes a 1024K SAMS memory card;
so, fbForth 2.0 is not compatible with 256K AMS cards.

Lower RAM 2000h – 3FFFh is reserved by fbForth 2.0 for four block buffers, low-
level support, system variables and the return stack; therefore, extreme care should be
taken when paging banks F8h and F9h out of 2000h and 3000h, respectively. The
same care should be taken with upper RAM when paging banks FAh and FFh out of
A000h (start of User Dictionary) and F000h (TIB and base of parameter stack),
respectively.

Because the RAM portion of the dictionary grows up from A030h and the parameter
stack grows down from FFA0h, extreme care must be taken mapping SAMS memory.
It is probably advisable to limit SAMS mapping to one or two 4KiBb window(s) at
D000h and/or E000h. If E000h is used, the stack is limited to 2000 cells, which is
probably sufficient for most programming.

 ALIGN Resident

(---)

ALIGN insures that HERE is on an even address boundary. Use of C, is one way
HERE can land on an odd address boundary. CREATE uses ALIGN before installing
the header for a new word definition. Align is very similar to =CELLS except that it
neither expects nor leaves anything on the stack.

 ASCII [immediate word] Resident

(--- ascii) (IS:token)

Leaves on the stack the ASCII value of the first character of the next token in the
input stream:

ASCII G . 71 ok:0

 ASM>CODE ASM>CODE -- Code Output Utility

(---) (IS:word DSKn.file)

ASM>CODE appends to DSKn.file the hexadecimal machine code of a Forth word

 Appendix A The fbForth 2.0 Glossary 19

written in ALC (Assembly Language Code) in CODE: word … ;CODE format,
where ‘…’ represents the machine code in text. This is useful for loading words
defined in ALC without the need for loading the fbForth TMS9900 Assembler from
FBLOCKS. Please note that ASM>CODE should not be used for words in the resident
dictionary because word entries in the resident dictionary are in an unconventional,
non-contiguous format.

ASM>CODE first checks to insure that word is a word defined in ALC. If it is not or it
does not exist, ASM>CODE quits with an error message to that effect. If it is an ALC
word, ASM>CODE attempts to open the file DSKn.file in Append mode. Failing that,
DSKn.file is created and opened in Output mode.

As an example you might assemble the word LDCR , the ALC for which is listed in
Appendix H “Assembly Source for CODEd Words” in the manual, and then run the
following code:

ASM>CODE LDCR DSK1.CRUWORDS

Examining the contents of DSK1.CRUWORDS would reveal the same code as
shown in Block #5 of FBLOCKS (17JUN2016 and later).

If you are using the TI-99/4A emulator, Classic99 (www.HarmlessLion.com), in
Microsoft Windows, you can use the Windows clipboard as the file CLIP as follows:

ASM>CODE LDCR CLIP

See Chapter 9 “The fbForth 2.0 TMS9900 Assembler” in the manual for more
information.

BOOT Resident

(n | []---)

This word's functionality has been changed from the original TI Forth functionality,
which essentially was a continuation of COLD . It now simply restarts the system as
though the user had just chosen the second or third option on the cartridge menu
screen. It expects the default text mode n on the stack. The value n is forced to 0 or
1 for TEXT80 or TEXT , respectively. BOOT may be executed with nothing on the
stack, in which case TEXT is used.

A key may be held down to select the boot disk number or <ENTER> may be held
down to prevent loading of FBLOCKS.

CASE [immediate word] Resident

Used in a colon definition to initiate the construct:

CASE
n1 OF … ENDOF
n2 OF … ENDOF
…
ELSEOF … ENDOF <==This clause is optional. See below.

ENDCASE

Compile time: (--- csp 4)

CASE gets the value csp of CSP to the stack for later restoration at the end of
ENDCASE ’s compile-time activity. It stores the current stack position in CSP to help

20 A.1 fbForth 2.0 Word Descriptions

ENDCASE track how many OF clause branch distances to process. It finally pushes 4
to the stack for compile-time error checking by OF and ENDCASE .

Runtime: (n --- n)

CASE itself does nothing with the number n on the stack; but, it must be there for OF ,
ELSEOF or ENDCASE to consume. If n = n1, the code between the immediately
following OF and ENDOF is executed. Execution then continues after ENDCASE . If n
does not match any of the values preceding any OF , the code between the last ENDOF
and ENDCASE is executed and may use n; but, one cell must be left for ENDCASE to
consume or a stack underflow will result. Execution then continues after ENDCASE .

Use of the optional ELSEOF obviates the necessity of putting any difficult-to-design
default action between the last ENDOF and ENDCASE .

 CODE: [immediate word] Resident

(---)

CODE: opens a CODE: cccc … ;CODE word definition that employs its own
interpreter to quickly convert numbers and compile them. See ;CODE for a detailed
explanation.

COLD Resident

(---)

COLD is the cold-start procedure that may be called from the terminal to remove
application programs and to restart fbForth 2.0. It is also the last routine executed
by the fbForth 2.0 startup code. Formerly, it was a high-level Forth word that called
another high-level Forth word (BOOT) at its conclusion. They have both been
combined into a single ALC routine that (re-)sets the Forth environment to the
default startup conditions.

In restarting fbForth 2.0, COLD resets user variables to their startup values, including
the dictionary pointer (to point to just after the resident dictionary), resets the current
blocks file to the default DSKn.FBLOCKS (n is the boot disk number), loads block
#1 and executes ABORT , q.v.

COLD may be called from the terminal to remove application programs and to restart
fbForth 2.0.

See § 2.4 “Changes to COLD” for more detail.

 DATA[[immediate word] Resident

(--- addr n) (IS:n1 … nn)

DATA[opens a DATA[…]DATA construct that compiles numbers and leaves their
beginning address addr and cell count n on the stack. If compiling within another
definition, DATA[compiles DATA[] and cell count n in front of the array.

 DATA[] Resident

(--- addr n)

Runtime routine compiled by DATA[to push to the stack the address addr and
number of cells n of the number array that follows it in a word definition.

 Appendix A The fbForth 2.0 Glossary 21

 DCHAR Resident

(addr cnt chr ---)

DCHAR is similar to “CALL CHAR” in TI Extended Basic, but is not limited to 4
characters. It is similar to CHAR , but uses an array of numbers instead of the stack
for pattern definition. It is used to define one or more characters starting at the
pattern address of character chr. DCHAR moves cnt cells from address addr to the
pattern address of character chr in VRAM.

 DCT Resident

(--- addr)

A constant that pushes to the stack the address addr of the Default Colors Table for
all VDP modes. It also gives the user access to the default text mode because it
immediately follows the table.

VDP Mode

Table
Offset
(bytes)

Screen/
Text

Colors

Color
Table
Colors

TEXT80 0 4Fh 00h

TEXT 2 4Fh 00h

GRAPHICS 4 F4h F4h

MULTI 6 11h F4h

GRAPHICS2 8 FEh 10h

SPLIT 10 FEh F4h

SPLIT2 12 FEh F4h

Default Text
Mode

Table
Offset
(bytes) VDP Mode

TEXT 14 0001h

All changes to the above values will survive execution of COLD .

 DEFBF Resident

(--- addr)

Gets the address addr of the default blocks filename (DSK1.FBLOCKS) in low RAM
to the stack. This address points to the string-length byte and can be displayed by

COUNT TYPE

If the boot disk is other than DSK1, that will be reflected in the name displayed by
the above Forth code.

 ELSEOF [immediate word] Resident

ELSEOF is the start of the catchall default ELSEOF … ENDOF clause that occurs
inside a colon definition as the optional default clause within the CASE … ENDCASE
construct, just before ENDCASE . If execution reaches ELSEOF , the words between

22 A.1 fbForth 2.0 Word Descriptions

ELSEOF and ENDOF will always be executed. There should be no value preceding
ELSEOF because the runtime stack value will be duplicated in its place to force a
match by the compiled (OF) .

Use of the ELSEOF clause guarantees that ENDCASE will never execute. It is a lot
easier to use an ELSEOF clause instead of trying to contrive a default action ahead of
ENDCASE . Compare with a description of just such a default action at CASE .

Compile time: (4 --- addr 5)

Checks for the value 4 on the stack left there by CASE or a previous ENDOF ,
compiles DUP to force runtime comparison of the value on the stack with itself
(guaranteeing a match), compiles (OF) , leaves its address addr for branching
resolution by ENDOF and leaves a 5 for its matching ENDOF to check.

Runtime: (n n ---)

Duplicates the value n, which was on top of the stack when CASE ’s runtime action
occurred. Comparison of the two identical numbers forces execution of the words
between ELSEOF and ENDOF . See CASE and ENDOF .

ENDCASE [immediate word] Resident

Occurs in a colon definition as the termination of the CASE … ENDCASE construct.

Compile time: (csp addr1 … addrn 4 ---)

It uses the 4 for compile-time error checking. It uses the value in CSP put there by
CASE to track the number of OF clauses for which it must calculate branch distances
from the addresses (addr1 … addrn) that each ENDOF left on the stack.

Runtime: (n ---)

If all OF clauses fail, any code after the last ENDOF , including ENDCASE , will
execute. ENDCASE will remove the number n left on the stack by the failure of the
last OF clause.

If you include code between the last ENDOF and ENDCASE , it must leave at least one
number on the stack for ENDCASE to consume to prevent stack underflow. See
CASE .

A better default action is to use an ELSEOF clause (with no preceding value) as the
last clause before ENDCASE . See ELSEOF for more information.

ERROR Resident

(n1 --- n2 n3 | [])

ERROR processes error notification and restarts the interpreter. WARNING is first
examined. If WARNING < 1, (ABORT) , q.v., is executed. The sole action of
(ABORT) is to execute ABORT . This allows the user to (cautiously!) modify this
behavior by replacing the CFA of (ABORT) with the CFA of the user’s error
procedure. ABORT clears the stacks and executes QUIT , which stops compilation and
restarts the interpreter.

If WARNING ≥ 0 and the input stream is not the terminal, ERROR leaves the contents of
IN n2 and BLK n3 on the stack to assist in determining the location of the error.
Execution of WHERE , at this point, will open the offending block in the editor and
place the cursor at the text immediately following the token that caused the error.

 Appendix A The fbForth 2.0 Glossary 23

If WARNING > 0, ERROR prints the error text of system message number n1. If
WARNING = 0, ERROR prints n1 as an error number (This was used in TI Forth in a
non-disk installation; but, this is unnecessary in fbForth 2.0 because the system
messages are always present in cartridge ROM). The last thing ERROR does is to
execute QUIT , which, as above, stops compilation and restarts the interpreter.

FLD Resident

(--- addr)

A user variable for control of number output field width. Presently unused in fig-
Forth and fbForth 2.0.

FNT Resident

(---)

FNT loads either the default font file (can be changed by user with USEFFL, q.v.) or
the console font into the Pattern Descriptor Table (PDT) depending on the value of
the user variable SCRFNT . The default font is loaded from DSK1.FBFONT by FNT
(or from DSKn.FBFONT if key n is held down) at fbForth 2.0 startup because
SCRFNT = -1 at startup. The fbForth 2.0 system default font contains the patterns
for ASCII character codes 0 – 127. The font pattern for each character is 8 bytes,
which means that 1KiB of pattern code is loaded into the PDT. This font contains
true lowercase characters with true descenders.

Executing COLD will maintain the currently selected font as the default. Restarting
the system with BOOT , MON or a power cycle will restore loading of the system font
from DSK1.FBFONT.

See Chapter 4 “Screen Font Changes” for more detail.

ISR Resident

(--- addr)

A user variable that initially contains 0 to indicate that no user Interrupt Service
Routine (ISR) has been installed. The user must modify ISR to contain the CFA of
the Forth routine to be executed each 1/60 second. Next, the contents of the console
ISR hook, 83C4h, must contain the address of the fbForth 2.0 ISR, which it does at
startup. Note that the interrupt service linkage code address is always available in
INTLNK .

The console ISR hook, 83C4h, should be zeroed before changing ISR and restored
with the value in INTLNK after changing it.

See Chapter 3 “Interrupt Service Routines (ISRs)” for much more detail.

 PAGE Resident

(---)

Clears the display screen and places the cursor at the top, left corner. It is a shortcut
for

CLS
0 0 GOTOXY

24 A.1 fbForth 2.0 Word Descriptions

 PANEL Resident

(x y w h ---)

Sets up a panel within the video display for SCROLL to scroll in any orthogonal
direction with or without wrapping, depending on the value of WRAP . The panel will
be w characters wide, h characters high with its upper, left corner at column x and
row y.

 PLAY Resident

(addr flag ---)

This word is ported from TurboForth code courtesy of Mark Wills.

PLAY starts the sound list at address addr, depending on flag:

Flag Action

0 Do not play if either sound list is active.

1 Unconditionally play, killing all previous sound lists.

-1 Plays as sound list #2, muting sound list #1 for the duration of sound list #2.

Sound lists consist of a list of sound commands starting with a byte count and ending
with a duration count (sixtieths of a second) that is not included in the byte count.
The last sound-command list should silence all four sound generators and end with a
duration of 0. See Section 20 of the Editor/Assembler Manual for details on sound
lists.

A sound list may be prepared for PLAY with DATA[…]DATA by dropping the cell
count:

DATA[<sound list>]DATA

DROP 1 PLAY

 PLAYING? Resident

(--- flag)

This word is ported from TurboForth code courtesy of Mark Wills.

PLAYING? checks both fbForth 2.0 sound status registers, ORs them and leaves that
value on the stack as flag. If flag = 0, no sound list is active.

PLAYING? is intended for use with PLAY , not SOUND . SOUND does not use the
fbForth 2.0 sound status registers.

 RP@ Resident

(--- addr)

Returns the address addr of the current top of the return stack.

 S" [immediate word] Resident

(--- addr | []) (IS:string")

Accepts a string from the input stream (IS) until ‘"’ is encountered. When executing,

 Appendix A The fbForth 2.0 Glossary 25

the packed string is stored at PAD and the address addr of the length byte is left on
the stack.

When compiling a word definition, SLIT is first compiled into the definition, then
the packed string. Later, when the word is executed, SLIT will push the address of
the string’s length byte to the stack and skip over the string to the word following it
in the definition.

S0 Resident

(--- addr)

User variable that points to the base of the parameter stack. Pronounced “s zero”.
See SP! .

 S0&TIB! Resident

(addr1 --- addr2)

This word is primarily for use in a 1024-byte SAMS environment, where it is or may
be necessary to move the stack base and TIB buffer, both of which start up at the
same address, viz., FFA0h. S0&TIB! forces addr1 to AFA0h, BFA0h, CFA0h, DFA0h,
EFA0h or FFA0h; copies it to the User Variables, S0 and TIB , in the table of default
values so the settings will survive COLD ; and leaves the new address on the stack as
addr2. The lower limit is forced above HERE so as not to destroy the user's
dictionary.

 SAMS! Resident

(---)

This word is ported from TurboForth code courtesy of Mark Wills.

This calls the SAMS initialization in the startup code in bank 1 to restore SAMS
mapping to initial conditions.

 SAMS? Resident

(--- flag)

This word is ported from TurboForth code courtesy of Mark Wills.

Leaves a copy of the SAMS flag from startup as flag.

 SAY Resident

(addr n ---)

This word is ported from TurboForth code courtesy of Mark Wills.

SAY needs on the stack the address addr of a block of Speech Synthesizer ROM
speech addresses and the number n of those addresses. This can be accomplished
with DATA[…]DATA . Consult Section 22 of the Editor/Assembler Manual for
details.

SCRFNT Resident

(--- addr)

A user variable containing a flag indicating whether FNT should load the current
default font (flag ≠ 0) or the console font (flag = 0). Changing the value in SCRFNT

26 A.1 fbForth 2.0 Word Descriptions

does not take effect until the next time FNT is executed.

See Chapter 4 “Screen Font Changes” for more detail.

 SCROLL Resident

(dir ---)

Scrolls the display screen panel set up by PANEL in direction dir. PANEL must be
executed at least once before SCROLL because its parameters are indeterminate after
powerup. Acceptable values for dir are

Direction Value

left 0

right 2

up 4

down 6

 SOUND Resident

(pitch vol ch# ---)

This word is ported from TurboForth code courtesy of Mark Wills.

Pitch pitch, volume vol and channel ch# are as described in the Editor/Assembler
Manual in Section 20. Pitch values range from 0 – 1023, 0 representing the highest
pitch. Volume values range from 0 – 15, 15 representing silence. Channels 0 – 2
represent the corresponding tone generators and channel 3 is the noise generator.

SOUND uses the pitch value for setting the type of noise for the noise generator
(channel 3). Shift rates are 0 – 3. Noise type can be white noise (0) or periodic noise
(4). The pitch value to pass to SOUND is the sum of shift rate and noise type and
ranges from 0 – 7.

Once a tone or noise generator is started, the sound/noise continues until silenced by
executing SOUND with a volume of 15. The pitch must be supplied, but is irrelevant.
The following Forth code will silence channel 2:

0 15 2 SOUND

 SPDCHAR Resident

(addr cnt chr ---)

Same as DCHAR , but for sprite pattern definitions because SPDTAB does not always
start at the same VRAM address as PDT.

 STREAM Resident

(addr n ---)

This word is ported from TurboForth code courtesy of Mark Wills.

STREAM needs on the stack the address addr of a block of raw speech data to be
spoken and the number of cells n in the buffer. This can be accomplished with
DATA[…]DATA . STREAM will feed the raw speech data to the Speech Synthesizer.

 Appendix A The fbForth 2.0 Glossary 27

 TALKING? Resident

(--- flag)

This word is ported from TurboForth code courtesy of Mark Wills.

TALKING? returns flag = 0 if the Speech Synthesizer is idle, otherwise, flag = 1.

It is a good idea to use TALKING? to insure the Speech Synthesizer is not busy before
executing SAY or STREAM .

 TIF2FBF TI Forth Block Utilities

(IS:srcStrtBlk srcEndBlk DSKn dstStrtBlk dstFile)

Copies the range of blocks (screens) srcStrtBlk – srcEndBlk from TI Forth disk
DSKn to fbForth blocks file dstFile, starting at block dstStrtBlk.

 TIFBLK TI Forth Block Utilities

(IS:blk DSKn)

Lists block (screen) blk of TI Forth disk DSKn to the display. The display will pause
for user intervention in Text mode due to wrapping 64-byte lines on a 40-column
display.

 TIFIDX TI Forth Block Utilities

(IS:strtBlk endBlk DSKn)

Lists the index (line #0) lines of a range of blocks (screens) strtBlk – endBlk of TI
Forth disk DSKn to the display. The display will pause for user intervention if the
list requires scrolling.

 TIFVU TI Forth Block Utilities

(IS:blk DSKn)
Starts the TI Forth disk browser/copier at block (screen) blk of TI Forth disk DSKn.
The browser is patterned after the fbForth block editors, allowing scrolling left and
right by panels and blocks. The user may also copy a range of TI Forth blocks to an
fbForth blocks file, which must have been created prior to entering the
browser/copier.

 TOKEN Resident

(delim --- addr | []) (IS:string")

TOKEN gets a string ending with delim from the input stream (IS) into PAD as a
packed string and passes the address addr of the string’s length byte on the stack if
interpreting (command line or loading), but compiles the packed string to HERE , with
nothing to the stack, if compiling.

TOKEN is used by several words in the resident dictionary, including MKBFL ,
USEBFL , S" , ." , WLITERAL and USEFFL .

28 A.1 fbForth 2.0 Word Descriptions

VLIST ***Definition is the same, but now ==> Resident

(---)

Prints the names of all words defined in the CONTEXT vocabulary. Note that VLIST
will display the names of even ill-defined words in the dictionary that cannot be
found with ' , -FIND or (FIND) , q.v., because their smudge bits are set. See
SMUDGE and PAUSE .

WARNING Resident

(--- addr)

A user variable (initialized by COLD to 1 at system startup), containing a value
controlling messages.

If WARNING > 0, full-text system error messages are displayed by MESSAGE and
ERROR , which executes MESSAGE .

If WARNING = 0, messages will be presented by number (msg #n). In TI Forth, it
means the disk is unavailable; but, this is not necessary in fbForth 2.0 because error
messages are always memory resident.

If WARNING < 0 when ERROR executes, ERROR will execute (ABORT) , which can be
redefined to execute a user-specified procedure instead of the default ABORT .

See MESSAGE , (ABORT) , ERROR and ?ERROR for more detail.

 WRAP Resident

(--- addr)

A user variable containing the wrapping flag for SCROLL . A non-zero value signals
SCROLL to wrap the disappearing row or column of the panel set up by PANEL to the
opposite side of the panel. The initial value of WRAP is 0.

 [DCHAR] Resident

(addr cnt chr vaddr ---)

Helper routine for DCHAR and SPDCHAR.

]DATA [immediate word] Resident

(---)

]DATA closes a DATA[…]DATA construct that compiles numbers and leaves their
beginning address and cell count on the stack. If compiling within another definition,
]DATA stores the cell count between the compiled DATA[] and the first number of
the array.

 Appendix A The fbForth 2.0 Glossary 29

 Appendix B User Variables in fbForth 2.0
This appendix corresponds to Appendix F of the manual. There is one new word (WRAP) added
to this table. There is one word (FLD) no longer part of this table.

The complete table is included here for context. See the corresponding appendix of the manual
for more detail.

 B.1 fbForth 2.0 User Variables (Address Offset Order)

Name Offset Initial Value Description

UCONS$ 06h 366Ch Base of User Var initial value table
S0 08h FFA0h Base of Stack
R0 0Ah 3FFEh Base of Return Stack
U0 0Ch 36B6h Base of User Variables
TIB 0Eh FFA0h Terminal Input Buffer address
WIDTH 10h 31 Name length in dictionary
DP 12h A000h Dictionary Pointer
SYS$ 14h 30DEh Address of System Support
CURPOS 16h 0 Cursor location in VDP RAM
INTLNK 18h 3020h Pointer to Interrupt Service Linkage
WARNING 1Ah 1 Message Control
C/L$ 1Ch 64 Characters per Line
FIRST$ 1Eh 2010h Beginning of Disk Buffers
LIMIT$ 20h 3020h End of Disk Buffers
COLTAB 22h 380h Color Table address in VRAM. COLTAB gets addr.
SATR 24h 300h Sprite Attribute Table address in VRAM. SATR gets addr.
SMTN 26h 780h Sprite Motion Table address in VRAM. SMTN gets addr.
PDT 28h 800h Pattern Descriptor Table addr in VRAM. PDT gets addr.
FPB 2Ah 80h User font file PAB offset from FRB. FPB gets addr.
DISK_BUF 2Ch 1000h VDP location of 128B Forth Record Buffer (FRB)
PABS 2Eh 460h VDP location for PABs
SCRN_WIDTH 30h 40 Display Screen Width in Characters
SCRN_START 32h 0 Display Screen Image Start in VDP
SCRN_END 34h 960 Display Screen Image End in VDP

ISR 36h 0 Interrupt Service Pointer

ALTIN 38h 0 Alternate Input Pointer
ALTOUT 3Ah 0 Alternate Output Pointer
VDPMDE 3Ch 1 VDP Mode
BPB 3Eh C6h Blocks PABs offset from FRB. BPB gets address.
BPOFF 40h 0 Current Blocks file offset from BPB. (0 or 70h)
SPDTAB 42h 800h Sprite Descriptor Table addr in VRAM. SPDTAB gets addr.

SCRFNT 44h -1 Flag for default/user font (≠ 0) or console font (= 0)

JMODE 46h 0 Flag for whether JOYST executes JKBD (=0) or JCRU (≠0)

30 B.1 fbForth 2.0 User Variables (Address Offset Order)

Name Offset Initial Value Description
 WRAP 48h 0 Flag for no wrap (= 0) or wrap (≠ 0); used by SCROLL

FENCE 4Ah Dictionary Fence
BLK 4Ch Block being interpreted
IN 4Eh Byte offset in text buffer
OUT 50h Incremented by EMIT
SCR 52h Last Forth Block (Screen) referenced
CONTEXT 54h Pointer to Context Vocabulary
CURRENT 56h Pointer to Current Vocabulary
STATE 58h Compilation State
BASE 5Ah Number Base for Conversions
DPL 5Ch Decimal Point Location
FLD 5Ch Field Width (unused)
CSP 5Eh Stack Pointer for error checking
R# 60h Editing Cursor location
HLD 62h Holds address during numeric conversion
USE 64h Next Block Buffer to Use
PREV 66h Most recently accessed disk buffer
ECOUNT 68h Error control
VOC-LINK 6Ah Vocabulary linkage
[user to define] 6Ch —available to user—
[user to define] 6Eh —available to user—
[user to define] 70h —available to user—
[user to define] 72h —available to user—
[user to define] 74h —available to user—
[user to define] 76h —available to user—
[user to define] 78h —available to user—
[user to define] 7Ah —available to user—
[user to define] 7Ch —available to user—
[user to define] 7Eh —available to user—

 Appendix B User Variables in fbForth 2.0 31

 B.2 fbForth 2.0 User Variables (Variable Name Order)

Name Offset Initial Value Description

ALTIN 38h 0 Alternate Input Pointer
ALTOUT 3Ah 0 Alternate Output Pointer
BASE 5Ah Number Base for Conversions
BLK 4Ch Block being interpreted
BPB 3Eh C6h Blocks PABs offset from FRB. BPB gets address.
BPOFF 40h 0 Current Blocks file offset from BPB. (0 or 70h)
C/L$ 1Ch 64 Characters per Line
COLTAB 22h 380h Color Table address in VRAM. COLTAB gets addr.
CONTEXT 54h Pointer to Context Vocabulary
CSP 5Eh Stack Pointer for error checking
CURPOS 16h 0 Cursor location in VDP RAM
CURRENT 56h Pointer to Current Vocabulary
DISK_BUF 2Ch 1000h VDP location of 128B Forth Record Buffer (FRB)
DP 12h A000h Dictionary Pointer
DPL 5Ch Decimal Point Location
ECOUNT 68h Error control
FENCE 4Ah Dictionary Fence
FIRST$ 1Eh 2010h Beginning of Disk Buffers
FLD 5Ch Field Width (unused)
FPB 2Ah 80h User font file PAB offset from FRB. FPB gets addr.
HLD 62h Holds address during numeric conversion
IN 4Eh Byte offset in text buffer
INTLNK 18h 3020h Pointer to Interrupt Service Linkage

ISR 36h 0 Interrupt Service Pointer

JMODE 46h 0 Flag for whether JOYST executes JKBD (=0) or JCRU (≠0)
LIMIT$ 20h 3020h End of Disk Buffers
OUT 50h Incremented by EMIT
PABS 2Eh 460h VDP location for PABs
PDT 28h 800h Pattern Descriptor Table addr in VRAM. PDT gets addr.
PREV 66h Most recently accessed disk buffer
R# 60h Editing Cursor location
R0 0Ah 3FFEh Base of Return Stack
S0 08h FFA0h Base of Stack
SATR 24h 300h Sprite Attribute Table address in VRAM. SATR gets addr.
SCR 52h Last Forth Block (Screen) referenced

SCRFNT 44h -1 Flag for default/user font (≠ 0) or console font (= 0)

SCRN_END 34h 960 Display Screen Image End in VDP
SCRN_START 32h 0 Display Screen Image Start in VDP
SCRN_WIDTH 30h 40 Display Screen Width in Characters
SMTN 26h 780h Sprite Motion Table address in VRAM. SMTN gets addr.
SPDTAB 42h 800h Sprite Descriptor Table addr in VRAM. SPDTAB gets addr.
STATE 58h Compilation State
SYS$ 14h 30DEh Address of System Support

32 B.2 fbForth 2.0 User Variables (Variable Name Order)

Name Offset Initial Value Description

TIB 0Eh FFA0h Terminal Input Buffer address
U0 0Ch 36B6h Base of User Variables
UCONS$ 06h 366Ch Base of User Var initial value table
USE 64h Next Block Buffer to Use
VDPMDE 3Ch 1 VDP Mode
VOC-LINK 6Ah Vocabulary linkage
WARNING 1Ah 1 Message Control
WIDTH 10h 31 Name length in dictionary

 WRAP 48h 0 Flag for no wrap (= 0) or wrap (≠ 0); used by SCROLL

[user to define] 7Eh —available to user—
[user to define] 7Ch —available to user—
[user to define] 7Ah —available to user—
[user to define] 78h —available to user—
[user to define] 76h —available to user—
[user to define] 74h —available to user—
[user to define] 72h —available to user—
[user to define] 70h —available to user—
[user to define] 6Eh —available to user—
[user to define] 6Ch —available to user—

 Appendix C fbForth 2.0 Load Option Directory 33

 Appendix C fbForth 2.0 Load Option
Directory

This appendix corresponds to Appendix G of the manual. New options are so indicated.

The load options are displayed by typing MENU . The load options allow you to load only the
Forth extensions you wish to use.

You will notice that some of the load options first load other Forth blocks upon which they
depend. For example, option, 64-Column Editor, depends on the words loaded by block 13,
which displays “loading compact list words” as block 13 starts to load. If, by chance, the
prerequisite words were already in the dictionary at the time you type 6 LOAD , they would not
be loaded again. This is called a conditional load.

 C.1 Option: 64-Column Editor

Starting screen: 6

Words loaded: EDIT ED@ WHERE
CLIST CLINE

 C.2 Option: CPYBLK -- Block Copying Utility

Starting screen: 4

Words loaded: SCMP CPYBLK

 C.3 Option: Memory Dump Utility

Starting screen: 16

Words loaded: DUMP

 C.4 Option: TRACE -- Colon Definition Tracing

Starting screen: 18

Words loaded: TRACE UNTRACE TRON
TROFF : (alternate)

 C.5 Option: Printing Routines

Starting screen: 19

Words loaded: SWCH UNSWCH ?ASCII
TRIAD TRIADS INDEX

34 C.6 Option: TMS9900 Assembler

 C.6 Option: TMS9900 Assembler

Starting screen: 21

Words loaded: Entire Assembler vocabulary. See Chapter 9 of the manual.

 C.7 Option: CRU Words

Starting screen: 5

Words loaded: SBO SBZ TB
LDCR STCR

 C.8 Option: More Useful Stack Words etc.

Starting screen: 41

Words loaded: 2DUP 2DROP NIP TUCK CELLS -ROT
PICK ROLL WITHIN <> $. EXIT

 C.9 Option: Stack-based String Library

Starting Screen: 42

Words loaded: Entire String Stack Library. See Chapter 14 of the manual.

 C.10 Option: DIR -- Disk Catalog Utility

Starting screen: 36

Words loaded: DIR

 C.11 Option: CAT -- Disk Catalog Utility

Starting screen: 58

Words loaded: CAT

 C.12 Option: TI Forth Block Utilities

Starting screen: 61

Words loaded: TIFBLK TIFIDX TIF2FBF TIFVU

 Appendix D Contents of FBLOCKS 35

 Appendix D Contents of FBLOCKS
This appendix corresponds with Appendix J of the manual.

The contents of the fbForth 2.0 system blocks file, FBLOCKS, that follow are derived from TI
Forth but are in different blocks. Much of this is due to the fact that the blocks are in a file rather
than referenced as sectors on a disk. The blocks are also not necessarily in the same order as in
TI Forth; however, the TI Forth block (screen) number is indicated as “(old TIF #...)” where
applicable. There are also many changes from TI Forth. Many words have been moved to the
resident dictionary and some TI Forth words have been removed. There are new words in
fbForth 2.0, as well. (cf. Appendix E in the manual)

Note that blocks are numbered from 1 in fbForth 2.0 rather than 0 as in TI Forth. There are also
15 blank blocks (blocks 14, 57, 68 – 80), which you can use as you wish. Note, also, that the
following file is dated 20JUN2016.

BLOCK #1 (old TIF #3)
 0 (fbForth WELCOME SCREEN---LES 20JUN2016)
 1 BASE->R HEX
 2 : MENU 1 BLOCK 2+ @ 6662 - 5 ?ERROR 2 LOAD ;
 3 ." FBLOCKS mod: 20JUN2016"
 4 CR CR ." Type MENU for load options." CR CR R->BASE ;S
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #2
 0 PAGE ." Load Options (20JUN2016) fbForth 2.0:"
 1 (Type build #) BASE->R HEX 6033 C@ EMIT R->BASE CR CR
 2 ." Description Load Block" CR
 3 ." ---------------------------------------" CR
 4 ." CPYBLK -- Block Copying Utility.......4" CR
 5 ." CRU Words.............................5" CR
 6 ." 64-Column Editor......................6" CR
 7 ." Memory Dump Utility..................16" CR
 8 ." TRACE -- Colon Definition Tracing....18" CR
 9 ." Printing Routines....................19" CR
 10 ." TMS9900 Assembler....................21" CR
 11 ." More Useful Stack Words etc..........41" CR
 12 ." Stack-based String Library...........42" CR
 13 ." DIR -- Disk Catalog Utility..........36" CR
 14 ." CAT -- Disk Catalog Utility..........58" CR
 15 ." TI Forth Block Utilities.............61" CR -->

36 Appendix D Contents of FBLOCKS

BLOCK #3
 0 ." ASM>CODE -- Code Output Utility......39" CR
 1 ." TMS9900 Assembler (v2.0:8 binary)....27" CR
 2 ." 64-Column Editor (v2.0:8 binary).....32" CR
 3 ." String Library (v2.0:8 binary).......52" CR CR
 4 ." Type <block> LOAD to load. " ;S
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #4 (old TIF #39)
 0 (Block Copy 17JUN2016 LES) CR CR ." CPYBLK copies a range
 1 of blocks to the same or another file, e.g.," CR CR ." CPYB
 2 LK 5 8 DSK1.F1 9 DSK2.F2" CR CR ." will copy blocks 5-8 from DS
 3 K1.F1 to DSK2.F2 starting at block 9." CR CR 0 CLOAD CPYBLK
 4 BASE->R DECIMAL 0 VARIABLE SFL 0 VARIABLE DFL 0 CONSTANT XD
 5 : SCMP OVER C@ OVER C@ OVER OVER - SGN >R MIN 1+ 0 SWAP 1 DO
 6 DROP OVER I + C@ OVER I + C@ - SGN DUP IF LEAVE THEN LOOP R>
 7 OVER 0= IF OR ELSE DROP THEN SWAP DROP SWAP DROP ; : GNUM BL
 8 WORD HERE NUMBER DROP ; : GBFL BL WORD HERE DUP C@ 1+ =CELLS
 9 ALLOT SWAP ! ; : CPYBLK EMPTY-BUFFERS 1 ' XD ! HERE BPB BPOFF
 10 @ + 9 + DUP VSBR 1+ HERE SWAP DUP =CELLS ALLOT VMBR GNUM GNUM
 11 OVER OVER > IF SWAP THEN OVER - 1+ >R SFL GBFL GNUM DFL GBFL SFL
 12 @ DFL @ SCMP 0= IF OVER OVER - DUP 0< SWAP R MINUS > + 2 = IF
 13 SWAP R + 1- SWAP R + 1- -1 ' XD ! THEN THEN CR R> 0 DO OVER DUP
 14 . OVER SFL @ (UB) SWAP BLOCK 2- ! DFL @ (UB) UPDATE FLUSH XD +
 15 SWAP XD + SWAP LOOP DROP DROP DUP (UB) DP ! ; R->BASE

BLOCK #5 (old TIF #88)
 0 (CRU WORDS 12OCT82 LAO) 0 CLOAD STCR
 1 CR ." loading CRU words"
 2 BASE->R HEX
 3 CODE: SBO C339 A30C 1D00 ;CODE
 4 CODE: SBZ C339 A30C 1E00 ;CODE
 5 CODE: TB C319 A30C 04D9 1F00 1601 0599 ;CODE
 6
 7 CODE: LDCR C339 A30C C079 C039 0241 000F 1304 0281
 8 0008 1501 06C0 0A61 0261 3000 0481 ;CODE
 9
 10 CODE: STCR C339 A30C C059 04C0 0241 000F C081 0A61 0261 3400
 11 0481 C082 1304 0282 0008 1501 06C0 C640 ;CODE
 12
 13 CR ." See Manual for usage." CR R->BASE
 14
 15

 Appendix D Contents of FBLOCKS 37

BLOCK #6 (old TIF #22)
 0 (64 COLUMN EDITOR)
 1 0 CLOAD EDITOR2 (ED@)
 2 BASE->R DECIMAL 13 R->BASE CLOAD CLIST
 3 BASE->R HEX CR ." loading 64-column editor"
 4
 5
 6 VOCABULARY EDITOR2 IMMEDIATE EDITOR2 DEFINITIONS
 7 0 VARIABLE CUR
 8 : !CUR 0 MAX 3FF MIN CUR ! ;
 9 : +CUR CUR @ + !CUR ;
 10 : +LIN CUR @ C/L / + C/L * !CUR ; DECIMAL
 11 : LINE. DO I SCR @ (LINE) I CLINE LOOP ;
 12
 13 : PTR CUR @ SCR @ BLOCK + ;
 14 : R/C CUR @ C/L /MOD ; (--- col row) R->BASE -->
 15

BLOCK #7 (old TIF #23)
 0 (64 COLUMN EDITOR) BASE->R HEX ." ."
 1
 2 : CINIT
 3 SATR 2 0 DO DUP >R D000 SP@ R> 2 VMBW DROP 4 + LOOP DROP
 4 0000 0000 0000 0000 5 SPCHAR 0 CUR !
 5 F090 9090 9090 90F0 6 SPCHAR 0 1 F 5 0 SPRITE ; DECIMAL
 6
 7 : PLACE CUR @ 64 /MOD 8 * 1+ SWAP 4 * 1- DUP 0< IF DROP 0 ENDIF
 8 SWAP 0 SPRPUT ;
 9 : UP -64 +CUR PLACE ;
 10 : DOWN 64 +CUR PLACE ;
 11 : LEFT -1 +CUR PLACE ;
 12 : RIGHT 1 +CUR PLACE ;
 13 : CGOTOXY (col row ---) 64 * + !CUR PLACE ;
 14
 15 R->BASE -->

BLOCK #8 (old TIF #24)
 0 (64 COLUMN EDITOR) BASE->R ." ."
 1
 2 DECIMAL
 3
 4 : .CUR CUR @ C/L /MOD CGOTOXY ;
 5 : DELHALF PAD 64 BLANKS PTR PAD C/L R/C DROP - CMOVE ;
 6
 7 : DELLIN R/C SWAP MINUS +CUR PTR PAD C/L CMOVE DUP L/SCR SWAP
 8 DO PTR 1 +LIN PTR SWAP C/L CMOVE LOOP
 9 0 +LIN PTR C/L 32 FILL C/L * !CUR ;
 10 : INSLIN R/C SWAP MINUS +CUR L/SCR +LIN DUP 1+ L/SCR 0 +LIN
 11 DO PTR -1 +LIN PTR SWAP C/L CMOVE -1 +LOOP
 12 PAD PTR C/L CMOVE C/L * !CUR ;
 13 : RELINE R/C SWAP DROP DUP LINE. UPDATE .CUR ;
 14 : +.CUR +CUR .CUR ;
 15 R->BASE -->

38 Appendix D Contents of FBLOCKS

BLOCK #9 (old TIF #25)
 0 (64 COLUMN EDITOR) BASE->R DECIMAL ." ."
 1 : -TAB PTR DUP C@ BL >
 2 IF BEGIN 1- DUP -1 +CUR C@ BL =
 3 UNTIL
 4 ENDIF
 5 BEGIN CUR @ IF 1- DUP -1 +CUR C@ BL > ELSE .CUR 1 ENDIF UNTIL
 6 BEGIN CUR @ IF 1- DUP -1 +CUR C@ BL = DUP IF 1 +.CUR ENDIF
 7 ELSE .CUR 1 ENDIF
 8 UNTIL DROP ;
 9 : TAB PTR DUP C@ BL = 0=
 10 IF BEGIN 1+ DUP 1 +CUR C@ BL =
 11 UNTIL
 12 ENDIF
 13 CUR @ 1023 = IF .CUR 1
 14 ELSE BEGIN 1+ DUP 1 +CUR C@ BL > UNTIL .CUR
 15 ENDIF DROP ; R->BASE -->

BLOCK #10 (old TIF #26)
 0 (64 COLUMN EDITOR) BASE->R ." ."
 1 DECIMAL
 2 : !BLK PTR C! UPDATE ;
 3 : BLNKS PTR R/C DROP C/L SWAP - 32 FILL ;
 4 : HOME 0 0 CGOTOXY ;
 5 : REDRAW SCR @ CLIST UPDATE .CUR ;
 6 : SCRNO CLS 0 0 GOTOXY ." BLOCK #" SCR @ BASE->R DECIMAL U.
 7 R->BASE CR ;
 8 : +SCR SCR @ 1+ DUP SCR ! SCRNO CLIST ;
 9 : -SCR SCR @ 1- 1 MAX DUP SCR ! SCRNO CLIST ;
 10 : DEL PTR DUP 1+ SWAP R/C DROP C/L SWAP - CMOVE 32
 11 PTR R/C DROP - C/L + 1- C! ;
 12 : INS 32 PTR DUP R/C DROP C/L SWAP - + SWAP DO
 13 I C@ LOOP DROP PTR DUP R/C DROP C/L SWAP - + 1- SWAP 1- SWAP
 14 DO I C! -1 +LOOP ; R->BASE -->
 15

BLOCK #11 (old TIF #27)
 0 (64 COLUMN EDITOR 15JUL82 LAO) BASE->R DECIMAL ." ."
 1 0 VARIABLE BLINK 0 VARIABLE OKEY
 2 10 CONSTANT RL 150 CONSTANT RH 0 VARIABLE KC RH VARIABLE RLOG
 3 : RKEY BEGIN ?KEY -DUP 1 BLINK +! BLINK @ DUP 60 < IF 6 0 SPRPAT
 4 ELSE 5 0 SPRPAT ENDIF 120 = IF 0 BLINK ! ENDIF
 5 IF (SOME KEY IS PRESSED) KC @ 1 KC +! 0 BLINK !
 6 IF (WAITING TO REPEAT) RLOG @ KC @ <
 7 IF (LONG ENOUGH) RL RLOG ! 1 KC ! 1 (FORCE EXT)
 8 ELSE OKEY @ OVER =
 9 IF DROP 0 (NEED TO WAIT MORE)
 10 ELSE 1 (FORCE EXIT) DUP KC ! ENDIF
 11 ENDIF
 12 ELSE (NEW KEY) 1 (FORCE LOOP EXIT) ENDIF
 13 ELSE (NO KEY PRESSED) RH RLOG ! 0 KC ! 0
 14 ENDIF
 15 UNTIL DUP OKEY ! ; R->BASE -->

 Appendix D Contents of FBLOCKS 39

BLOCK #12 (old TIF #28 & 29)
 0 (64 COLUMN EDITOR) BASE->R HEX ." ."
 1 : EDT VDPMDE @ >R SPLIT (0 1000 040 VFILL) (0F 7 VWTR)
 2 (1000 800 01B VFILL) CINIT !CUR R/C CGOTOXY
 3 DUP DUP SCR ! SCRNO CLIST BEGIN RKEY CASE 08 OF LEFT ENDOF
 4 0C OF -SCR ENDOF 0A OF DOWN ENDOF 03 OF DEL RELINE ENDOF
 5 0B OF UP ENDOF 04 OF INS RELINE ENDOF 09 OF RIGHT ENDOF
 6 07 OF DELLIN REDRAW ENDOF 06 OF INSLIN REDRAW ENDOF
 7 0E OF HOME ENDOF 02 OF +SCR ENDOF 16 OF TAB ENDOF
 8 0D OF 1 +LIN .CUR PLACE ENDOF 1E OF INSLIN BLNKS REDRAW ENDOF
 9 01 OF DELHALF BLNKS RELINE ENDOF 7F OF -TAB ENDOF
 10 0F OF 5 0 SPRPAT R> VMODE CLS SCRNO DROP QUIT ENDOF
 11 DUP 1F > OVER 7F < AND IF DUP !BLK R/C SWAP DROP DUP SCR @
 12 (LINE) ROT CLINE 1 +.CUR ELSE 7 EMIT ENDIF ENDCASE AGAIN ;
 13 FORTH DEFINITIONS : EDIT EDITOR2 0 EDT ;
 14 : WHERE EDITOR2 SWAP 2- EDT ; : ED@ EDITOR2 SCR @ SCRNO EDIT ;
 15 CR CR ." See Manual for usage." CR R->BASE

BLOCK #13 (old TIF #65 – #66)
 0 (COMPACT LIST)
 1 0 CLOAD CLIST BASE->R CR ." loading compact list words"
 2 DECIMAL 0 VARIABLE TCHAR 382 ALLOT
 3 15 BLOCK 192 + TCHAR 384 CMOVE HEX
 4 TCHAR 7C - CONSTANT TC 0 VARIABLE BADDR 0 VARIABLE INDX
 5 0 VARIABLE LB FE ALLOT
 6 CODE: SMASH (ADDR #CHAR LINE# --- LB VADDR CNT)
 7 C079 C0B9 C0D9 0204 LB , C644 0649 06C1 0221 2000 C641 C042
 8 0581 0241 FFFE 0649 0A21 C641 A083 80C2 1501 1020 04C5 04C6
 9 D173 D1B3 0965 0966 C025 TC , C066 TC , 0B41 020C 0004 C2C0
 10 024B F000 C1C1 0247 0F00 E1CB DD07 0BC0 0BC1 060C 16F4 05C5
 11 05C6 C305 024C 0002 16E7 10DD ;CODE
 12 DECIMAL
 13 : CLINE LB 100 ERASE SMASH VMBW ;
 14 : CLOOP DO I 64 * OVER + 64 I CLINE LOOP DROP ;
 15 : CLIST BLOCK 16 0 CLOOP ; R->BASE

BLOCK #14
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

40 Appendix D Contents of FBLOCKS

BLOCK #15 (old TIF #67)
 0 (Tiny character patterns for TCHAR array---compact list for
 1 64-column editor---388 bytes, lines 3:0-9:0 below)
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #16 (old TIF #42)
 0 (DUMP ROUTINES 12JUL82 LCT...25OCT2015 LES mod)
 1 0 CLOAD DUMP BASE->R HEX CR ." loading memory dump utility"
 2 : VM+ VDPMDE @ 0= IF + ELSE DROP THEN ;
 3 : DUMP8 -DUP
 4 IF
 5 BASE->R HEX 0 OUT ! OVER 4 U.R 3A EMIT
 6 OVER OVER 0 DO
 7 DUP @ 0 <# # # # # BL HOLD BL HOLD #> TYPE 2+ 2
 8 +LOOP DROP 1F 18 VM+ OUT @ - SPACES
 9 0 DO
 10 DUP C@ DUP 20 < OVER 7E > OR
 11 IF DROP 2E ENDIF
 12 EMIT 1+
 13 LOOP
 14 CR R->BASE ENDIF ; -->
 15

BLOCK #17 (old TIF #43)
 0 (DUMP ROUTINES 12JUL82 LCT...25OCT2015 LES mod) ." ."
 1 : DUMP CR 00 8 8 VM+ U/ >R SWAP R> -DUP
 2 IF 0
 3 DO 8 8 VM+ DUMP8 PAUSE IF SWAP DROP 0 SWAP LEAVE ENDIF LOOP
 4 ENDIF SWAP DUMP8 DROP ;
 5 (.S and VLIST have been put in resident dictionary)
 6 R->BASE ;S
 7
 8
 9
 10
 11
 12
 13
 14
 15

 Appendix D Contents of FBLOCKS 41

BLOCK #18 (old TIF #44)
 0 (TRACE COLON WORDS-FORTH DIMENSIONS III/2 P.58 26OCT82 LCT)
 1 0 CLOAD (TRACE) CR ." loading colon definition tracing "
 2 FORTH DEFINITIONS
 3 0 VARIABLE TRACF (CONTROLS INSERTION OF TRACE ROUTINE)
 4 0 VARIABLE TFLAG (CONTROLS TRACE OUTPUT)
 5 : TRACE 1 TRACF ! ;
 6 : UNTRACE 0 TRACF ! ;
 7 : TRON 1 TFLAG ! ;
 8 : TROFF 0 TFLAG ! ;
 9 : (TRACE) TFLAG @ (GIVE TRACE OUTPUT?)
 10 IF CR R 2- NFA ID. (BACK TO PFA NFA FOR NAME)
 11 .S ENDIF ; (PRINT STACK CONTENTS)
 12 : : (REDEFINED TO INSERT TRACE WORD AFTER COLON)
 13 ?EXEC !CSP CURRENT @ CONTEXT ! CREATE [' : CFA @] LITERAL
 14 HERE 2- ! TRACF @ IF ' (TRACE) CFA DUP @ HERE 2- ! , ENDIF]
 15 ; IMMEDIATE

BLOCK #19 (old TIF #72)
 0 (ALTERNATE I/O SUPPORT FOR RS232 PNTR 12JUL82 LCT...mod LES)
 1 0 CLOAD INDEX CR ." loading printing routines"
 2 0 0 0 FILE >RS232 BASE->R HEX
 3 : SWCH >RS232 PABS @ 10 + DUP PAB-ADDR ! 1- PAB-VBUF !
 4 SET-PAB OUTPT F-D" RS232.BA=9600" OPN 3
 5 PAB-ADDR @ VSBW 1 PAB-ADDR @ 5 + VSBW PAB-ADDR @ ALTOUT ! ;
 6 : UNSWCH 0 ALTOUT ! CLSE ;
 7 : ?ASCII (BLOCK# --- FLAG)
 8 BLOCK 0 SWAP DUP 400 + SWAP
 9 DO I C@ 20 > + I C@ DUP 20 < SWAP 7F > OR
 10 IF DROP 0 LEAVE ENDIF LOOP ;
 11 : TRIAD 0 SWAP SWCH 3 / 3 * 1+ DUP 3 + SWAP
 12 DO I ?ASCII IF 1+ I LIST CR ENDIF LOOP
 13 -DUP IF 3 SWAP - 14 * 0 DO CR LOOP
 14 ." fbForth --- a TI-Forth/fig-Forth extension" 0C EMIT
 15 ENDIF UNSWCH ; R->BASE -->

BLOCK #20 (old TIF #73)
 0 (SMART TRIADS AND INDEX 15SEP82 LAO...mod LES)
 1 BASE->R DECIMAL ." ."
 2 : TRIADS (from to ---)
 3 3 / 3 * 2+ SWAP 3 / 3 * 1+ DO I TRIAD 3 +LOOP ;
 4 : INDEX (from to ---) 1+ SWAP
 5 DO I DUP ?ASCII IF CR 4 .R 2 SPACES I BLOCK 64 TYPE ELSE DROP
 6 ENDIF PAUSE IF LEAVE ENDIF LOOP ; R->BASE ;S
 7
 8
 9
 10
 11
 12
 13
 14
 15

42 Appendix D Contents of FBLOCKS

BLOCK #21 (old TIF #75)
 0 (ASSEMBLER 12JUL82 LCT-LES12DEC2013) 0 CLOAD A$$M BASE->R HEX
 1 ASSEMBLER DEFINITIONS CR ." loading TMS9900 assembler" CR ." "
 2 : GOP' OVER DUP 1F > SWAP 30 < AND IF + , , ELSE + , ENDIF ;
 3 : GOP <BUILDS , DOES> @ GOP' ;
 4 0440 GOP B, 0680 GOP BL, 0400 GOP BLWP,
 5 04C0 GOP CLR, 0700 GOP SETO, 0540 GOP INV,
 6 0500 GOP NEG, 0740 GOP ABS, 06C0 GOP SWPB,
 7 0580 GOP INC, 05C0 GOP INCT, 0600 GOP DEC,
 8 0640 GOP DECT, 0480 GOP X,
 9 : GROP <BUILDS , DOES> @ SWAP 40 * + GOP' ;
 10 2000 GROP COC, 2400 GROP CZC, 2800 GROP XOR,
 11 3800 GROP MPY, 3C00 GROP DIV, 2C00 GROP XOP,
 12 : GGOP <BUILDS , DOES> @ SWAP DUP DUP 1F > SWAP 30 < AND
 13 IF 40 * + SWAP >R GOP' R> , ELSE 40 * + GOP' ENDIF ;
 14 A000 GGOP A, B000 GGOP AB, 8000 GGOP C, 9000 GGOP CB,
 15 6000 GGOP S, 7000 GGOP SB, E000 GGOP SOC, F000 GGOP SOCB, -->

BLOCK #22 (old TIF #76)
 0 (ASSEMBLER 12JUL82 LCT) ." ."
 1 4000 GGOP SZC, 5000 GGOP SZCB, C000 GGOP MOV, D000 GGOP MOVB,
 2 : 0OP <BUILDS , DOES> @ , ;
 3 0340 0OP IDLE, 0360 0OP RSET, 03C0 0OP CKOF,
 4 03A0 0OP CKON, 03E0 0OP LREX, 0380 0OP RTWP,
 5 : ROP <BUILDS , DOES> @ + , ; 02C0 ROP STST, 02A0 ROP STWP,
 6 : IOP <BUILDS , DOES> @ , , ; 02E0 IOP LWPI, 0300 IOP LIMI,
 7 : RIOP <BUILDS , DOES> @ ROT + , , ; 0220 RIOP AI,
 8 0240 RIOP ANDI, 0280 RIOP CI, 0200 RIOP LI, 0260 RIOP ORI,
 9 : RCOP <BUILDS , DOES> @ SWAP 10 * + + , ;
 10 0A00 RCOP SLA, 0800 RCOP SRA, 0B00 RCOP SRC, 0900 RCOP SRL,
 11 : DOP <BUILDS , DOES> @ SWAP 00FF AND OR , ;
 12 1300 DOP JEQ, 1500 DOP JGT, 1B00 DOP JH, 1400 DOP JHE,
 13 1A00 DOP JL, 1200 DOP JLE, 1100 DOP JLT, 1000 DOP JMP,
 14 1700 DOP JNC, 1600 DOP JNE, 1900 DOP JNO, 1800 DOP JOC,
 15 1C00 DOP JOP, 1D00 DOP SBO, 1E00 DOP SBZ, 1F00 DOP TB, -->

BLOCK #23 (old TIF #77)
 0 (ASSEMBLER 12JUL82 LCT) ." ." CR ." "
 1 : GCOP <BUILDS , DOES> @ SWAP 000F AND 040 * + GOP' ;
 2 3000 GCOP LDCR, 3400 GCOP STCR,
 3 00 CONSTANT R0 01 CONSTANT R1 02 CONSTANT R2 03 CONSTANT R3
 4 04 CONSTANT R4 05 CONSTANT R5 06 CONSTANT R6 07 CONSTANT R7
 5 08 CONSTANT R8 09 CONSTANT R9 0A CONSTANT R10 0B CONSTANT R11
 6 0C CONSTANT R12 0D CONSTANT R13 0E CONSTANT R14
 7 0F CONSTANT R15 08 CONSTANT UP 09 CONSTANT SP 0A CONSTANT W
 8 0D CONSTANT IP 0E CONSTANT RP 0F CONSTANT NEXT
 9 : @() 020 ; : *? 010 + ; : *?+ 030 + ; : @(?) 020 + ;
 10 : @(R0) R0 @(?) ; : *R0 R0 *? ; : *R0+ R0 *?+ ;
 11 : @(R1) R1 @(?) ; : *R1 R1 *? ; : *R1+ R1 *?+ ;
 12 : @(R2) R2 @(?) ; : *R2 R2 *? ; : *R2+ R2 *?+ ;
 13 : @(R3) R3 @(?) ; : *R3 R3 *? ; : *R3+ R3 *?+ ;
 14 : @(R4) R4 @(?) ; : *R4 R4 *? ; : *R4+ R4 *?+ ;
 15 : @(R5) R5 @(?) ; : *R5 R5 *? ; : *R5+ R5 *?+ ; -->

 Appendix D Contents of FBLOCKS 43

BLOCK #24 (old TIF #78)
 0 (ASSEMBLER 12JUL82 LCT) ." ."
 1 : @(R6) R6 @(?) ; : *R6 R6 *? ; : *R6+ R6 *?+ ;
 2 : @(R7) R7 @(?) ; : *R7 R7 *? ; : *R7+ R7 *?+ ;
 3 : @(R8) R8 @(?) ; : *R8 R8 *? ; : *R8+ R8 *?+ ;
 4 : @(R9) R9 @(?) ; : *R9 R9 *? ; : *R9+ R9 *?+ ;
 5 : @(R10) R10 @(?) ; : *R10 R10 *? ; : *R10+ R10 *?+ ;
 6 : @(R11) R11 @(?) ; : *R11 R11 *? ; : *R11+ R11 *?+ ;
 7 : @(R12) R12 @(?) ; : *R12 R12 *? ; : *R12+ R12 *?+ ;
 8 : @(R13) R13 @(?) ; : *R13 R13 *? ; : *R13+ R13 *?+ ;
 9 : @(R14) R14 @(?) ; : *R14 R14 *? ; : *R14+ R14 *?+ ;
 10 : @(R15) R15 @(?) ; : *R15 R15 *? ; : *R15+ R15 *?+ ;
 11 : @(UP) UP @(?) ; : *UP UP *? ; : *UP+ UP *?+ ;
 12 : @(SP) SP @(?) ; : *SP SP *? ; : *SP+ SP *?+ ;
 13 : @(W) W @(?) ; : *W W *? ; : *W+ W *?+ ;
 14 : @(IP) IP @(?) ; : *IP IP *? ; : *IP+ IP *?+ ;
 15 -->

BLOCK #25 (old TIF #79)
 0 (ASSEMBLER 12JUL82 LCT) ." ."
 1 : @(RP) RP @(?) ; : *RP RP *? ; : *RP+ RP *?+ ;
 2 : *NEXT+ NEXT *?+ ; : *NEXT NEXT *? ; : @(NEXT) NEXT @(?) ;
 3 : @@ @() ; : ** *? ; : *+ *?+ ; : () @(?) ; (Wycove syntax)
 4
 5 (DEFINE JUMP TOKENS)
 6 : GTE 1 ; : H 2 ; : NE 3 ; : L 4 ; : LTE 5 ; : EQ 6 ;
 7 : OC 7 ; : NC 8 ; : OO 9 ; : HE 0A ; : LE 0B ; : NP 0C ;
 8 : LT 0D ; : GT 0E ; : NO 0F ; : OP 10 ;
 9 : CJMP ?EXEC
 10 CASE LT OF 1101 , 0 ENDOF GT OF 1501 , 0 ENDOF
 11 NO OF 1901 , 0 ENDOF OP OF 1C01 , 0 ENDOF
 12 DUP 0< OVER 10 > OR IF 19 ERROR ENDIF DUP
 13 ENDCASE 100 * 1000 + , ;
 14 : IF, ?EXEC [COMPILE] CJMP HERE 2- 42 ; IMMEDIATE
 15 -->

BLOCK #26 (old TIF #80)
 0 (ASSEMBLER 12JUL82 LCT) ." ."
 1 : ENDIF, ?EXEC
 2 42 ?PAIRS HERE OVER - 2- 2 / SWAP 1+ C! ; IMMEDIATE
 3 : ELSE, ?EXEC 42 ?PAIRS 0 [COMPILE] CJMP HERE 2- SWAP 42
 4 [COMPILE] ENDIF, 42 ; IMMEDIATE
 5 : BEGIN, ?EXEC HERE 41 ; IMMEDIATE
 6 : UNTIL, ?EXEC SWAP 41 ?PAIRS [COMPILE] CJMP HERE - 2 / 00FF
 7 AND HERE 1- C! ; IMMEDIATE
 8 : AGAIN, ?EXEC 0 [COMPILE] UNTIL, ; IMMEDIATE
 9 : REPEAT, ?EXEC >R >R [COMPILE] AGAIN,
 10 R> R> 2- [COMPILE] ENDIF, ; IMMEDIATE
 11 : WHILE, ?EXEC [COMPILE] IF, 2+ ; IMMEDIATE
 12 (: NEXT, *NEXT B, ;) (<--now in kernel)
 13 : RT, R11 ** B, ; (RT pseudo-instruction)
 14 : THEN, [COMPILE] ENDIF, ; IMMEDIATE (ENDIF, synonym)
 15 FORTH DEFINITIONS : A$$M ; R->BASE

44 Appendix D Contents of FBLOCKS

BLOCK #27
 0 (TMS9900 Assembler BLOAD)
 1 ." loading TMS9900 assembler "
 2 BASE->R 28 R->BASE BLOAD
 3 : BLERR IF ." BLOAD error!" THEN ; BLERR FORGET BLERR
 4 FORTH DEFINITIONS ;S
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #28 – BLOCK #31 TMS9900 Assembler Binary
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #32
 0 (64-Column Editor BLOAD)
 1 ." loading 64-column editor "
 2 BASE->R 33 R->BASE BLOAD
 3 : BLERR IF ." BLOAD error!" THEN ; BLERR FORGET BLERR
 4 FORTH DEFINITIONS ;S
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 Appendix D Contents of FBLOCKS 45

BLOCK #33 – BLOCK #35 64-Column Editor Binary
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #36
 0 (TurboForth [MRW] Disk Catalog Utility..mod 19JUN2015 LES)
 1 0 CLOAD DIR 0 CLOAD CAT CR ." loading DIR catalog utility"
 2 BASE->R HEX 0 VARIABLE CatRec 24 ALLOT
 3 1152 @ CatRec OVER 46 + FILE Cat 0 VARIABLE Total
 4 0 VARIABLE FCount 0 VARIABLE LC 0 VARIABLE bpr
 5 0 VARIABLE sect 0 VARIABLE prot 0B10 VARIABLE Tabs 1C00 ,
 6 : Tab (n ---) Tabs + C@ CURPOS @ SCRN_WIDTH @ / GOTOXY ;
 7 : @R100 9 * CatRec DUP C@ + 2+ + PAD 8 CMOVE PAD F@ F->S ;
 8 : DskInfo RD DROP CR CatRec COUNT ." Disk Name: " TYPE CR
 9 ." Total: " 1 @R100 DUP U.
 10 ." Free: " 2 @R100 DUP U. ." Used: " - U. CR ;
 11 : Ftype (ftype ---) 2 @R100 bpr ! CASE 1 OF ." DIS/FIX"
 12 ENDOF 2 OF ." DIS/VAR" ENDOF 3 OF ." INT/FIX" ENDOF 4 OF
 13 ." INT/VAR" ENDOF 5 OF ." PROGRAM" 0 bpr ! ENDOF
 14 ." ???????" 0 bpr ! ENDCASE
 15 bpr @ -DUP IF 4 U.R THEN ; R->BASE -->

BLOCK #37
 0 BASE->R DECIMAL ." ."
 1 : Head1 (---) ." ---------- ---- ------- --- -" CR ;
 2 : Head (---) ." Name Size Type B/R P" CR Head1 ;
 3 : DoDIR 0 LC ! 0 Total ! 0 FCount ! Head BEGIN
 4 LC @ 20 MOD 19 = IF KEY DROP CR Head THEN RD DROP
 5 CatRec COUNT DUP WHILE TYPE
 6 1 @R100 DUP 1- sect ! DUP 0 Tab 4 U.R Total +! 0 @R100 DUP
 7 prot ! ABS 1 Tab Ftype prot @ 0< IF 2 Tab ." Y" THEN CR
 8 1 LC +! 1 FCount +! REPEAT
 9 DROP DROP Head1
 10 FCount @ . ." files" 0 Tab Total @ 4 U.R ." sectors" CR ;
 11 R->BASE -->
 12
 13
 14
 15

46 Appendix D Contents of FBLOCKS

BLOCK #38
 0 BASE->R ." ."
 1 : DIR
 2 Cat SET-PAB (Initialize PAB skeleton)
 3 INTRNL FXD RLTV INPT 38 REC-LEN
 4 (Get directory name from input stream)
 5 PAB-ADDR @ 10 + 32 WORD HERE COUNT >R SWAP R VMBW R> N-LEN!
 6 (Get the catalog and display it)
 7 OPN (open the catalog)
 8 DskInfo (display disk info)
 9 DoDIR (display file list)
 10 CLSE (close the catalog) ;
 11 R->BASE CR
 12 ." DIR - Catalogs a disk." CR
 13 ." E.g., DIR DSK1." CR
 14
 15

BLOCK #39
 0 (ASM>CODE [port of Mark Wills' code] LES20JUN2016)
 1 CR ." Loading ASM>CODE" 0 CLOAD ASM>CODE BASE @ HEX
 2 0 VARIABLE pfa 0 VARIABLE STRPOS 0 VARIABLE FBUF 4E ALLOT
 3 PABS @ FBUF 1200 FILE FileOut FileOut SET-PAB
 4 : ClearBUF FBUF 50 BLANKS ; : SetFileName (IS:fileName)
 5 BL WORD HERE PAB-ADDR @ 9 + OVER C@ 1+ VMBW ;
 6 : ApdERR (0 msg# -- flag) DROP PAB-ADDR @ 1+ VSBR 0E0 AND
 7 OR R> R> DROP >R ; : instApdERR ' ApdERR CFA ' (ABORT) !
 8 -1 WARNING ! ; : uninstApdERR ' ABORT CFA ' (ABORT) ! 1
 9 WARNING ! ; : OpenFile (--) FileOut DSPLY VRBL 50 REC-LEN
 10 instApdERR 0 APPND OPN uninstApdERR IF OUTPT OPN THEN ;
 11 : Asm? pfa @ DUP CFA @ = ;
 12 : copyStr (addr count --) STRPOS @ 5 * FBUF + SWAP CMOVE ;
 13 : SetName ClearBUF S" CODE: " COUNT copyStr pfa @ NFA DUP C@
 14 01F AND SWAP 1+ SWAP FBUF 6 + SWAP 0 DO OVER C@ 07F AND
 15 OVER C! 1+ SWAP 1+ SWAP LOOP DROP DROP ; -->

BLOCK #40
 0 (ASM>CODE..continued LES20JUN2016) ." ."
 1 : FlushLine 40 WRT ClearBUF 0 STRPOS ! ; : PlaceCell pfa @ @
 2 0 <# # # # # #> copyStr 1 STRPOS +! 2 pfa +! ;
 3 : &; S" ;CODE" COUNT copyStr ;
 4 : ProcessWord SetName FlushLine BASE->R 10 BASE ! BEGIN pfa @ @
 5 045F = 0= WHILE PlaceCell STRPOS @ 0C = IF FlushLine THEN
 6 REPEAT &; FlushLine R->BASE ;
 7 : ASM>CODE (IS:wordName fileName) CR -FIND IF DROP ELSE 0 THEN
 8 pfa ! SetFileName pfa @ IF Asm? IF OpenFile ProcessWord CLSE
 9 ELSE ." Not an assembly language word" THEN
 10 ELSE ." Word not found" THEN ;
 11 CR ." Usage: ASM>CODE <name> <file>"
 12 CR ." E.g.: ASM>CODE MYWORD DSK1.MYWORD" CR BASE ! ;S
 13
 14
 15

 Appendix D Contents of FBLOCKS 47

BLOCK #41
 0 (Useful words--most are required by fbForth String Library)
 1 (written by Mark Wills, Lee Stewart & Marshall Linker)
 2 0 CLOAD $. CR ." Loading useful additional words--" CR
 3 ." 2DUP 2DROP NIP TUCK CELLS -ROT PICK ROLL WITHIN <> $. EXIT"
 4 : 2DUP (a b -- a b a b) OVER OVER ;
 5 : 2DROP (a b --) DROP DROP ; : NIP (a b -- b) SWAP DROP ;
 6 : TUCK (a b -- b a b) SWAP OVER ; : CELLS (n -- 2n) 2 * ;
 7 : -ROT (a b c -- c a b) ROT ROT ;
 8 : PICK (+n -- [n]) 1+ CELLS SP@ + @ ;
 9 (The source for ROLL was Marshall Linker via
 10 George Smyth's Forth Forum)
 11 : ROLL ([n]..[0] +n -- [n-1]..[0][n])
 12 -DUP IF 1- SWAP >R MYSELF R> SWAP THEN ;
 13 : WITHIN (n low high -- true|false) OVER - >R - R> U< ;
 14 : <> (a b -- 1|0) = 0= ; : $. BASE->R HEX U. R->BASE ;
 15 : EXIT (--) [COMPILE] ;S ; IMMEDIATE

BLOCK #42
 0 (Portable, Stack Based String Library for fbForth V2.0)
 1 (V 1.0 - Mark Wills Sept 2014.)
 2 (Ported from the original TurboForth code by Mark Wills)
 3 (Modified by Lee Stewart October 2014)
 4 BASE->R DECIMAL 41 R->BASE CLOAD $.
 5 CR ." Loading String Library"
 6 0 CONSTANT ($sSize)
 7 HERE CONSTANT ($sEnd)
 8 ($sEnd) VARIABLE ($sp)
 9 0 VARIABLE ($temp1)
 10 0 VARIABLE ($depth)
 11 0 VARIABLE ($temp0)
 12 0 VARIABLE ($temp2)
 13 0 VARIABLE ($temp3) -->
 14
 15

BLOCK #43
 0 (Throw codes for string library, mod: Lee Stewart)
 1 BASE->R DECIMAL ." ."
 2 : (throw) (code --)
 3 CASE
 4 ($sSize) 0= IF DROP 9999 THEN
 5 9900 OF ." String stack underflow" ENDOF
 6 9901 OF ." String too large to assign" ENDOF
 7 9902 OF ." String stack is empty" ENDOF
 8 9903 OF ." Need at least 2 strings on string stack" ENDOF
 9 9904 OF ." String too large for string constant" ENDOF
 10 9905 OF ." Illegal LEN value" ENDOF
 11 9906 OF ." Need at least 3 strings on string stack" ENDOF
 12 9908 OF ." Illegal start value" ENDOF
 13 9999 OF ." String stack not initialized" ENDOF
 14 ENDCASE
 15 CR ABORT ; R->BASE -->

48 Appendix D Contents of FBLOCKS

BLOCK #44
 0 (String stack words, mod: Lee Stewart [INIT$ added])
 1 : ($depth+) (--) 1 ($depth) +! ; BASE->R DECIMAL ." ."
 2 : ($sp@) (-- addr) ($sp) @ ;
 3 : ($rUp) (n -- n|n+1) 1+ -2 AND ;
 4 : cell+ (n -- n+2) COMPILE 2+ ; IMMEDIATE
 5 : (sizeOf$) ($addr - $size) @ ($rUp) cell+ ;
 6 : (set$SP) ($size --) MINUS DUP ($sp@) + ($sEnd)
 7 < IF 9900 (throw) THEN ($sp) +! ;
 8 : (addrOf$) (index -- addr) ($sp@) SWAP DUP IF 0 DO
 9 DUP (sizeOf$) + LOOP ELSE DROP THEN ;
 10 : (lenOf$) ($addr -- len)
 11 STATE @ IF COMPILE @ ELSE @ THEN ; IMMEDIATE
 12 : INIT$ (stack_size --) ' ($sSize) ! HERE ' ($sEnd) !
 13 ($sEnd) ($sSize) + ($sp) ! ($sSize) ALLOT ;
 14 : RESET$ (--) 0 ($depth) ! ($sEnd) ($sSize) + ($sp) ! ;
 15 : DEPTH$ (-- $sDepth) ($depth) @ ; R->BASE -->

BLOCK #45
 0 (String constant words etc.) BASE->R DECIMAL ." ."
 1 : $CONST (max_len tib:"name" --) (runtime: -- $Caddr)
 2 <BUILDS ($rUp) DUP , 0 , ALLOT DOES> NOP ;
 3 : CLEN$ ($Caddr -- len) cell+ @ ;
 4 : MAXLEN$ ($Caddr -- max_len) (lenOf$) ;
 5 : .$CONST ($Caddr --) cell+ DUP (lenOf$)
 6 SWAP cell+ SWAP TYPE ;
 7 : :=" ($Caddr tib:"string" --) DUP @ 34 WORD HERE COUNT
 8 SWAP >R 2DUP < IF 9901 (throw) THEN NIP 2DUP SWAP cell+
 9 ! >R [2 CELLS] LITERAL + R> R> -ROT CMOVE ;
 10 : ($") (addr len --) (ss: -- str) DUP ($rUp) cell+ (set$SP)
 11 DUP ($sp@) ! ($sp@) cell+ SWAP CMOVE ($depth+) ;
 12 : (COMPILE$) (addr len --) DUP >R PAD SWAP CMOVE HERE 6 CELLS
 13 COMPILE LIT + , COMPILE LIT R , COMPILE BRANCH HERE R
 14 ($rUp) + HERE - 2+ , PAD 12 - R HERE SWAP CMOVE R> ($rUp)
 15 ALLOT COMPILE ($") ; R->BASE -->

BLOCK #46
 0 (String stack words) BASE->R DECIMAL ." ."
 1 : $" 34 WORD HERE COUNT STATE @ IF (COMPILE$) ELSE ($") THEN ;
 2 IMMEDIATE : >$ cell+ DUP (lenOf$) SWAP cell+ SWAP ($") ;
 3 : PICK$ DEPTH$ 0= IF 9902 (throw) THEN
 4 (addrOf$) DUP (lenOf$) SWAP cell+ SWAP ($") ;
 5 : DUP$ DEPTH$ 0= IF 9902 (throw) THEN 0 PICK$;
 6 : DROP$ DEPTH$ 0= IF 9902 (throw) THEN
 7 ($sp@) (sizeOf$) MINUS (set$SP) -1 ($depth) +! ;
 8 : SWAP$ DEPTH$ 2 < IF 9903 (throw) THEN ($sp@) DUP (sizeOf$)
 9 HERE SWAP CMOVE 1 (addrOf$) DUP (sizeOf$) ($sp@) SWAP CMOVE
 10 HERE DUP (sizeOf$) ($sp@) DUP (sizeOf$) + SWAP CMOVE ;
 11 : NIP$ DEPTH$ 2 < IF 9903 (throw) THEN SWAP$ DROP$;
 12 : OVER$ DEPTH$ 2 < IF 9903 (throw) THEN 1 PICK$;
 13 : (rot$) ($sp@) 3 (addrOf$) ($sp@) (sizeOf$)
 14 1 (addrOf$) (sizeOf$) 2 (addrOf$) (sizeOf$) + + CMOVE
 15 3 (addrOf$) ($sp) ! -3 ($depth) +! ; R->BASE -->

 Appendix D Contents of FBLOCKS 49

BLOCK #47
 0 (String stack words) BASE->R DECIMAL ." ."
 1 : ROT$ DEPTH$ 3 < IF 9906 (throw) THEN
 2 1 PICK$ 1 PICK$ 4 PICK$ (rot$) ;
 3 : -ROT$ DEPTH$ 3 < IF 9906 (throw) THEN
 4 0 PICK$ 3 PICK$ 3 PICK$ (rot$) ;
 5 : LEN$ DEPTH$ 1 < IF 9902 (throw) THEN ($sp@) @ ;
 6 : >$CONST >R DEPTH$ 1 < IF 9902 (throw) THEN LEN$ R @ > IF 9904
 7 (throw) THEN ($sp@) DUP (sizeOf$) R> cell+ SWAP CMOVE DROP$;
 8 : +$ DEPTH$ 2 < IF 9903 (throw) THEN 1 (addrOf$) cell+ HERE 1
 9 (addrOf$) (lenOf$) CMOVE ($sp@) cell+ 1 (addrOf$) (lenOf$) HERE
 10 + LEN$ CMOVE HERE LEN$ 1 (addrOf$) (lenOf$) + DROP$ DROP$ ($") ;
 11 : MID$ DEPTH$ 1 < IF 9902 (throw) THEN DUP LEN$ > OVER 1 < OR
 12 IF 9905 (throw) THEN OVER DUP LEN$ > SWAP 0< OR IF 9908
 13 (throw) THEN SWAP ($sp@) cell+ + SWAP ($") ;
 14 : LEFT$ DEPTH$ 1 < IF 9902 (throw) THEN DUP LEN$ > OVER 1 < OR
 15 IF 9905 (throw) THEN 0 ($sp@) cell+ + SWAP ($") ; R->BASE -->

BLOCK #48
 0 (String stack words) BASE->R DECIMAL ." ."
 1 : RIGHT$ DEPTH$ 1 < IF 9902 (throw) THEN DUP LEN$ > OVER 1 <
 2 OR IF 9905 (throw) THEN ($sp@) (lenOf$) OVER -
 3 ($sp@) cell+ + SWAP ($") ;
 4 : FINDC$ DEPTH$ 1 < IF 9902 (throw) THEN -1 ($temp0) ! ($sp@)
 5 cell+ ($sp@) (lenOf$) 0 DO DUP C@ 2 PICK = IF I ($temp0) !
 6 LEAVE THEN 1+ LOOP DROP DROP ($temp0) @ ;
 7 : FIND$ DEPTH$ 2 < IF 9903 (throw) THEN LEN$ ($temp1) ! 1
 8 (addrOf$) (lenOf$) ($temp0) ! DUP ($temp0) @ > IF DROP -1 EXIT
 9 THEN 1 (addrOf$) cell+ + ($temp2) ! ($sp@) cell+ ($temp3) !
 10 ($temp1) @ ($temp0) @ > IF DROP -1 EXIT THEN 0 ($temp0) @ 0 DO
 11 ($temp3) @ OVER + C@ ($temp2) @ I + C@ = IF 1+ DUP ($temp1) @
 12 = IF DROP I ($temp1) @ - 1+ -2 LEAVE THEN ELSE DROP 0 THEN
 13 LOOP DUP -2 = IF DROP ELSE DROP -1 THEN DROP$;
 14 : .$ DEPTH$ 0= IF 9902 (throw) THEN
 15 ($sp@) cell+ ($sp@) (lenOf$) TYPE DROP$; R->BASE -->

BLOCK #49
 0 (String stack words) BASE->R DECIMAL ." ."
 1 : REV$ DEPTH$ 0= IF 9902 (throw) THEN ($sp@) DUP cell+ >R
 2 (lenOf$) R> SWAP HERE SWAP CMOVE ($sp@) (lenOf$) HERE 1- +
 3 ($sp@) cell+ DUP ($sp@) (lenOf$) + SWAP DO
 4 DUP C@ I C! 1- LOOP DROP ;
 5 : LTRIM$ DEPTH$ 0= IF 9902 (throw) THEN ($sp@) DUP (lenOf$) >R
 6 HERE OVER (sizeOf$) CMOVE 0 R> HERE cell+ DUP >R + R> DO I C@
 7 BL = IF 1+ ELSE LEAVE THEN LOOP DUP 0 > IF >R ($sp@) (lenOf$)
 8 DROP$ HERE cell+ R + SWAP R> - ($") ELSE DROP THEN ;
 9 : RTRIM$ DEPTH$ 0= IF 9902 (throw) THEN REV$ LTRIM$ REV$;
 10 : UCASE$ DEPTH$ 1 < IF 9902 (throw) THEN ($sp@) DUP (lenOf$) +
 11 cell+ ($sp@) cell+ DO I C@ DUP 97 123 WITHIN IF 32 - I
 12 C! ELSE DROP THEN LOOP ; : TRIM$ RTRIM$ LTRIM$;
 13 : LCASE$ DEPTH$ 1 < IF 9902 (throw) THEN ($sp@) DUP (lenOf$) +
 14 cell+ ($sp@) cell+ DO I C@ DUP 65 91 WITHIN IF
 15 32 + I C! ELSE DROP THEN LOOP ; R->BASE -->

50 Appendix D Contents of FBLOCKS

BLOCK #50
 0 (String stack words, mod: LES [CMP$ added])
 1 BASE->R DECIMAL ." ."
 2 : REPLACE$ DEPTH$ 3 < IF 9906 (throw) THEN LEN$ >R 0 FIND$ DUP
 3 ($temp0) ! -1 > IF ($sp@) cell+ HERE ($temp0) @ CMOVE 1
 4 (addrOf$) cell+ HERE ($temp0) @ + 1 (addrOf$) (lenOf$) CMOVE
 5 ($sp@) cell+ ($temp0) @ + R + HERE ($temp0) @ + 1 (addrOf$)
 6 (lenOf$) + LEN$ R> - ($temp0) @ - DUP >R CMOVE R> ($temp0)
 7 @ + 1 (addrOf$) (lenOf$) + DROP$ DROP$ HERE SWAP ($")
 8 ELSE R> DROP THEN ($temp0) @ ;
 9 : CMP$ DEPTH$ 2 < IF 9903 (throw) THEN 1 (addrOf$) cell+ ($sp@)
 10 cell+ 1 (addrOf$) (lenOf$) LEN$ OVER OVER - SGN >R MIN 0
 11 SWAP 0 DO DROP OVER I + C@ OVER I + C@ - SGN DUP IF LEAVE
 12 THEN LOOP R> OVER 0= IF OR ELSE DROP THEN -ROT DROP DROP ;
 13 : VAL$ ($sp@) DUP (lenOf$) >R cell+ PAD 1+ R CMOVE
 14 R PAD C! 32 PAD R> + 1+ C! PAD NUMBER DROP$;
 15 R->BASE -->

BLOCK #51
 0 (String stack words) BASE->R DECIMAL ." ." CR
 1 : $.S CR DEPTH$ 0 > IF ($sp@) DEPTH$." Index|Length|String"
 2 CR ." ------+------+------" CR 0 BEGIN DEPTH$ 0 > WHILE DUP
 3 6 .R ." |" LEN$ 6 .R ." |" .$ 1+ CR REPEAT DROP ($depth) !
 4 ($sp) ! CR ELSE ." String stack is empty." CR THEN
 5 ." Allocated stack space:" ($sEnd) ($sSize) + ($sp@) - 4 .R
 6 ." bytes" CR ." Total stack space:" ($sSize) 4 .R
 7 ." bytes" CR ." Stack space remaining:" ($sp@) ($sEnd) - 4
 8 .R ." bytes" CR ; R->BASE
 9 ." You MUST initialize the string stack before you can use the
 10 string library:" CR
 11 ." 512 INIT$" CR
 12 ." will create a string stack with 512 bytes available." CR
 13 ." Example: $" 34 EMIT ." RED" 34 EMIT ." $" 34 EMIT
 14 ." GREEN" 34 EMIT ." $" 34 EMIT ." BLUE" 34 EMIT ." $.S"
 15 CR

BLOCK #52
 0 (String Library BLOAD)
 1 ." loading string library " CR
 2 ." You MUST initialize the string stack before you can use the
 3 string library:" CR
 4 ." 512 INIT$" CR
 5 ." will create a string stack with 512 bytes available." CR
 6 ." Example: $" 34 EMIT ." RED" 34 EMIT ." $" 34 EMIT
 7 ." GREEN" 34 EMIT ." $" 34 EMIT ." BLUE" 34 EMIT ." $.S"
 8 CR
 9 BASE->R DECIMAL 53 R->BASE BLOAD
 10 : BLERR IF ." BLOAD error!" THEN ; BLERR FORGET BLERR
 11 FORTH DEFINITIONS ;S
 12
 13
 14
 15

 Appendix D Contents of FBLOCKS 51

BLOCK #53 – BLOCK #56 String Library Binary
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #57
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

BLOCK #58
 0 (Catalog program that uses VIB, FDIR and FDRs..LES 11NOV2015)
 1 0 CLOAD CAT 0 CLOAD DIR
 2 BASE->R CR ." loading CAT catalog program"
 3 HEX 0 VARIABLE Buf1 0FE ALLOT 0 VARIABLE Buf2 12 ALLOT
 4 0 VARIABLE Total 0 VARIABLE FCount 0 VARIABLE LC
 5 0 VARIABLE bpr 0 VARIABLE sect 0 VARIABLE prot
 6 1154 CONSTANT VBuf 0B10 VARIABLE Tabs 181E ,
 7 0110 VARIABLE CATPAB
 8 : RdErr? (err ---) -DUP IF CR ." Disk I/O error "
 9 BASE->R [COMPILE] HEX . R->BASE ABORT THEN ;
 10 : DSRLNK10 0A 0E SYSTEM 8350 C@ RdErr? ;
 11 : getBuf (bufadr count ---) VBuf ROT ROT VMBR ;
 12 : getSect (sect# ---) 8350 ! VBuf 834E ! VBuf 2- 8356 !
 13 DSRLNK10 ;
 14 : Tab (n ---) Tabs + C@ CURPOS @ SCRN_WIDTH @ / GOTOXY ;
 15 R->BASE -->

52 Appendix D Contents of FBLOCKS

BLOCK #59
 0 BASE->R DECIMAL ." ."
 1 : getFree (--- n) 0 Buf2 ! Buf1 56 + DUP 200 + SWAP DO
 2 I @ 65535 XOR -DUP IF 16 0 DO DUP 1 AND Buf2 +! 1 SRL LOOP
 3 DROP THEN 2 +LOOP Buf2 @ ; : Head1 (---)
 4 ." ---------- ---- --- --- ----- -" CR ; : Head (---)
 5 ." Name Size Typ B/R Bytes P" CR Head1 ; HEX
 6 : DskInfo (dsk# ---) SWPB 1+ 834C ! 0 getSect Buf1 100 getBuf
 7 CR Buf1 0A ." Disk Name: " TYPE CR ." Total: " Buf1 0A + @ 2-
 8 DUP U. ." Free: " getFree DUP U.
 9 ." Used: " - U. CR ; DECIMAL
 10 : Ftype (---) Buf2 17 + C@ bpr ! Buf2 12 + C@ DUP 8 AND
 11 prot ! 247 AND CASE 0 OF ." D/F" ENDOF 128 OF
 12 ." D/V" ENDOF 2 OF ." I/F" ENDOF 130 OF ." I/V"
 13 ENDOF 1 OF ." PGM" sect @ 256 * Buf2 16 + C@ -DUP IF +
 14 256 - THEN 0 bpr ! 2 Tab 5 U.R ENDOF ." ???" 0 bpr !
 15 ENDCASE bpr @ -DUP IF 4 U.R THEN ; R->BASE -->

BLOCK #60
 0 BASE->R DECIMAL ." ."
 1 : DoCAT (---) 0 LC ! 0 Total ! 0 FCount ! Head 1 getSect
 2 Buf1 256 getBuf Buf1 BEGIN LC @ 20 MOD 19 = IF KEY DROP
 3 CR Head THEN DUP @ -DUP WHILE getSect Buf2 20 getBuf Buf2 10
 4 TYPE Buf2 14 + @ DUP sect ! 1+ DUP 0 Tab 4 U.R Total +! 1 Tab
 5 Ftype prot @ IF 3 Tab ." Y" THEN CR 1 LC +! 1 FCount +! 2+
 6 REPEAT DROP Head1 FCount @ . ." files" 0 Tab Total @ 4 U.R
 7 ." sectors" CR ;
 8 : CAT (dsk# ---) BASE->R [COMPILE] DECIMAL
 9 CATPAB VBuf 2- 2 VMBW DskInfo DoCAT R->BASE ;
 10 CR ." n CAT - Catalogs a disk. n = disk #." CR
 11 ." E.g., 1 CAT catalogs DSK1." CR R->BASE ;S
 12
 13
 14
 15

BLOCK #61
 0 (TI Forth disk browser/copier..LES 04DEC2015) BASE->R HEX
 1 CR ." loading TI Forth Viewer/Copier"
 2 1154 CONSTANT VTIbuf 0110 VARIABLE TIPAB 1 VARIABLE Dsk
 3 0 VARIABLE outBFL 10 ALLOT 0 VARIABLE curBFL 10 ALLOT
 4 : GNUM BL WORD HERE NUMBER DROP ; : getDOidx (-- lim idx)
 5 GNUM GNUM OVER OVER > IF SWAP THEN 1+ SWAP ; : BlkBuf PREV @
 6 2+ ; : getDsk (IS:DSKn) BL WORD HERE 4 + C@ 30 - Dsk ! ;
 7 : RdErr? (err --) -DUP IF CR ." Disk I/O error " BASE->R
 8 [COMPILE] HEX . R->BASE ABORT THEN ; : DSRLNK10 0A 0E SYSTEM
 9 8350 C@ RdErr? ; : getTIblock FLUSH TIPAB VTIbuf 2- 2 VMBW
 10 VTIbuf 834E ! Dsk @ SWPB 1+ 834C ! 2 SLA BlkBuf DUP 400 + SWAP
 11 DO DUP 8350 ! 1+ VTIbuf 2- 8356 ! DSRLNK10 VTIbuf I 100 VMBR
 12 100 +LOOP DROP ; : dnLeft CURPOS @ SCRN_WIDTH @ MOD IF CR THEN
 13 ; : EMITG (n --) CURPOS @ VSBW CURPOS @ 1+ DUP SCRN_END @ <
 14 IF CURPOS ! ELSE DROP CR THEN ; : TYPEG (addr cnt --) -DUP
 15 IF OVER + SWAP DO I C@ EMITG LOOP ELSE DROP THEN ; R->BASE -->

 Appendix D Contents of FBLOCKS 53

BLOCK #62
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : dspLine (line# --) 40 * BlkBuf + 40 TYPEG ;
 2 : 64page? CURPOS @ 40 + SCRN_END @ > IF KEY DROP PAGE THEN ;
 3 : TIFBLK (IS:blk# DSKn) GNUM getDsk getTIblock PAGE 10 0 DO
 4 64page? dnLeft I 2 .R ." | " I dspLine PAUSE IF LEAVE THEN
 5 LOOP ; : TIFIDX (IS:startblk endblk DSKn) getDOidx getDsk
 6 PAGE DO I getTIblock 64page? dnLeft I 3 .R ." | " 0 dspLine
 7 PAUSE IF LEAVE THEN LOOP CR ." ...done" ; : gBFL (--) BL
 8 WORD HERE outBFL HERE C@ 1+ CMOVE ; : saveCurBFL BPB BPOFF @
 9 + 9 + DUP VSBR curBFL SWAP 1+ VMBR ; : getBFL TIB @ 0F EXPECT
 10 0 IN ! gBFL ; : cpyTI2FB (dstBlk# lim idx --) CURPOS @ >R
 11 DO J CURPOS ! I 3 .R I getTIblock DUP PREV @ ! UPDATE FLUSH
 12 1+ LOOP DROP R> DROP ;
 13 : TIF2FBF (IS:srcStrtBlk srcEndBlk DSKn dstStrtBlk dstBlksFil)
 14 saveCurBFL getDOidx getDsk GNUM gBFL outBFL (UB) ROT ROT
 15 cpyTI2FB curBFL (UB) ; R->BASE -->

BLOCK #63
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : BOXCHRS DATA[0000 003C 3C30 3030 0000 00F0 F030 3030 3030
 2 303C 3C00 0000 3030 30F0 F000 0000 0000 00FC FC00 0000 0000
 3 00FC FC30 3030 3030 3030 3030 3030 3060 C070 380C 1830 40A0
 4 A8B4 5414 0800 40C0 4854 F414 0800 40A0 2854 F414 0800 C020
 5 4834 D414 0800 2060 A8F4 3414 0800 E080 6834 D414 0800 4080
 6 C8B4 5414 0800 0000 FC00 FC00 FC00]DATA C9 DCHAR ;
 7 D1CD VARIABLE TLDATA DATA[CDCD CDCE CDCD CDCD D2CD CDCD CDCE
 8 CDCD CDCD D3CD CDCD CDCE CDCD CDCD D4CD CDCD CDCE CDCD CDCD
 9 D5CD CDCD CDCE CDCD CDCD D6CD CDCD CDCE CDCD CDCD D7CD CDCD
 10]DATA DROP DROP
 11 0 VARIABLE TIFblk 0 VARIABLE fbFblk 0 CONSTANT OFFSET
 12 : WINWID (-- winwid) SCRN_WIDTH @ 28 = IF 22 ELSE 40 THEN ;
 13 : CORNERS 3 3 1 0C9 HCHAR 3 14 1 0CB HCHAR 4 WINWID + DUP 3 1
 14 0CA HCHAR 14 1 0CC HCHAR ; : TOPLN (--) OFFSET TLDATA + 4
 15 3 GOTOXY WINWID TYPEG ; R->BASE -->

BLOCK #64
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : BOTLN 4 14 WINWID 0CD HCHAR ; : SIDELN (col chr --) 4 10
 2 ROT VCHAR ; : SIDELNS 3 0CF SIDELN WINWID 4 + 0CF SIDELN ;
 3 : RPT (chr cnt --) 0 DO DUP EMITG LOOP DROP ; : drawScrn
 4 PAGE 0D8 6 RPT ." TI Forth Block Viewer/Copier" 0D8 6 RPT
 5 VDPMDE @ 0= IF 0D8 28 RPT THEN ." TI Forth:DSK fbForth:" CR
 6 ." Block Block" 0 ' OFFSET ! CORNERS TOPLN BOTLN
 7 SIDELNS SCRN_WIDTH @ DUP 4 * BASE->R DECIMAL 10 0 DO DUP
 8 CURPOS ! I 3 .R OVER + LOOP R->BASE DROP DROP CR CR
 9 ." F4:+Block F6:-Block FD:+Panel FS:-Panel "
 10 ." FT:TI# FF:fb# ^F:BlkFil ^S:TI>fb F9:Xit" ; : dspLnSeg
 11 (line# --) 40 * BlkBuf OFFSET + + WINWID TYPEG ; : dspBlock
 12 SCRN_WIDTH @ 28 = IF 3 26 OFFSET CASE 00 OF 0CF 0D0 ENDOF 0F
 13 OF 0D0 0D0 ENDOF 1E OF 0D0 0CF ENDOF ELSEOF 0CF 0CF ENDOF
 14 ENDCASE ROT SWAP SIDELN SIDELN TOPLN THEN 10 0 DO SCRN_WIDTH @
 15 I 4 + * 4 + CURPOS ! I dspLnSeg LOOP ; R->BASE -->

54 Appendix D Contents of FBLOCKS

BLOCK #65
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : calcOff (-1|0|+1 --) DUP IF 0F * OFFSET + DUP 0< IF DROP 1E
 2 THEN DUP 1E > IF DROP 0 THEN THEN ' OFFSET ! ; : dspPanel
 3 (+1|-1 --) WINWID 22 = IF calcOff dspBlock ELSE DROP THEN ;
 4 : getCmd (-- key) ?KEY DUP IF BEGIN ?KEY 0= UNTIL THEN ;
 5 : dspBlk# (n col row --) GOTOXY 3 .R ; : get# (-- n) TIB @
 6 3 EXPECT 0 IN ! BL WORD HERE NUMBER DROP ; : getBlk#
 7 (min col row -- n) ROT >R OVER OVER GOTOXY CURPOS @ DUP 3 20
 8 VFILL CURPOS ! get# DUP R < IF DROP R> ELSE R> DROP THEN DUP
 9 >R ROT ROT dspBlk# R> ; : nxtTIblk (+1|-1 --) TIFblk +!
 10 TIFblk @ DUP 8 2 dspBlk# getTIblock 0 calcOff dspBlock ;
 11 : clrLstLn 0 17 SCRN_WIDTH @ 20 HCHAR 0 17 GOTOXY ;
 12 : keyPrompt ." ..tap key" KEY DROP clrLstLn ; R->BASE -->
 13
 14
 15

BLOCK #66
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 : cmd (get command key) BEGIN getCmd CASE 02 OF 1 nxtTIblk 0
 2 ENDOF 0C OF TIFblk @ IF -1 nxtTIblk THEN 0 ENDOF 09 OF 1
 3 dspPanel 0 ENDOF 08 OF -1 dspPanel 0 ENDOF 5D OF 0 8 2 getBlk#
 4 DUP TIFblk ! getTIblock 0 calcOff dspBlock 0 ENDOF 7B OF 1 18
 5 2 getBlk# fbFblk ! 0 ENDOF 06 OF 18 1 GOTOXY CURPOS @ DUP 10
 6 20 VFILL CURPOS ! getBFL outBFL (UB) 0 ENDOF 13 OF fbFblk @
 7 DUP IF outBFL @ DUP IF SWAP TIFblk @ clrLstLn
 8 ." How many blocks? " get# OVER + SWAP clrLstLn cpyTI2FB
 9 ." done" keyPrompt ELSE SWAP DROP THEN THEN 0= IF clrLstLn
 10 ." fbForth block#|file not set!" keyPrompt THEN 0 ENDOF 0F OF
 11 PAGE 1 ENDOF ELSEOF 0 ENDOF ENDCASE UNTIL ;
 12 : TIFVU (IS:blk# DSKn) GNUM DUP TIFblk ! getDsk getTIblock
 13 VDPMDE @ 2 < IF saveCurBFL BOXCHRS drawScrn 0C 1 GOTOXY Dsk @
 14 . TIFblk @ 8 2 dspBlk# dspBlock cmd curBFL (UB) ELSE CR
 15 ." TEXT or TEXT80 modes only!" THEN ; R->BASE -->

BLOCK #67
 0 (TI Forth disk browser/copier..continued) BASE->R HEX ." ."
 1 CR CR ." USAGE:"
 2 CR ." TIFBLK <block#> DSKn"
 3 CR ." ex: TIFBLK 2 DSK2"
 4 CR ." TIFIDX <strtBlock#> <endBlock#> DSKn"
 5 CR ." ex: TIFIDX 9 40 dsk1"
 6 CR ." TIF2FBF <srcStrtBlk#> <srcEndBlk#>"
 7 CR ." DSKn <dstStrtBlk#> <dstFile>"
 8 CR ." ex: TIF2FBF 3 6 DSK3 9 DSK1.MYBLOCKS"
 9 CR ." TIFVU <block#> DSKn"
 10 CR ." ex: TIFVU 58 DSK2" CR CR R->BASE ;S
 11
 12
 13
 14
 15

	1 Introduction
	2 Startup Changes
	2.1 The Opening Menu
	2.2 Enabling 1024-Byte SAMS Mapping
	2.3 Changes to the fbForth 2.0 ISR
	2.4 Changes to COLD
	2.5 Redefinition of BOOT

	3 Interrupt Service Routines (ISRs)
	3.1 Overview of fbForth 2.0:8’s ISR
	3.2 A Detailed Look at fbForth 2.0:8’s ISR
	3.3 Installing a User ISR
	3.4 Example of a User ISR: DEMO
	3.4.1 Installing the DEMO ISR
	3.4.2 Un-Installing the DEMO ISR

	3.5 Some Additional Thoughts Concerning the Use of ISRs

	4 Screen Font Changes
	5 TI Forth Block Utilities
	5.1 TIFBLK: Display TI Forth Block
	5.2 TIFIDX: Display TI Forth Index Lines
	5.3 TIF2FBF: Copy TI Forth Blocks to fbForth Blocks
	5.4 TIFVU: TI Forth Browser/Copier

	6 Bug Fixes
	Appendix A The fbForth 2.0 Glossary
	A.1 fbForth 2.0 Word Descriptions

	Appendix B User Variables in fbForth 2.0
	B.1 fbForth 2.0 User Variables (Address Offset Order)
	B.2 fbForth 2.0 User Variables (Variable Name Order)

	Appendix C fbForth 2.0 Load Option Directory
	C.1 Option: 64-Column Editor
	C.2 Option: CPYBLK -- Block Copying Utility
	C.3 Option: Memory Dump Utility
	C.4 Option: TRACE -- Colon Definition Tracing
	C.5 Option: Printing Routines
	C.6 Option: TMS9900 Assembler
	C.7 Option: CRU Words
	C.8 Option: More Useful Stack Words etc.
	C.9 Option: Stack-based String Library
	C.10 Option: DIR -- Disk Catalog Utility
	C.11 Option: CAT -- Disk Catalog Utility
	C.12 Option: TI Forth Block Utilities

	Appendix D Contents of FBLOCKS

